Iron and Manganese Removal from Groundwater Using High Quality Limestone

2015 ◽  
Vol 802 ◽  
pp. 460-465 ◽  
Author(s):  
Nor Azliza Akbar ◽  
Hamidi Abdul Aziz ◽  
Mohd Nordin Adlan

Several techniques are used for iron and manganese removal from groundwater. Among these treatments, adsorption has been proven to be a very effective in metal removal for groundwater treatment. Thus, limestone has been proposed as adsorption media because of its low cost. In this study, the mineral contents of limestone were detected using X-ray fluorescence (XRF). XRF results showed that limestone contains 97.93% CaCO3, 0.87% MgO, and 1.2% other elements. Groundwater sample was obtained from USM borehole located at 5° 08’ 50.5”N and 100° 29’ 34.7”E. A batch study was carried out for various dosages of limestone media (5–50 g) in 200 mL of groundwater sample. The highest iron and manganese removal was more than 90% and 70%, respectively, at optimum dosage of 40 g/200 mL sample. Adsorption data were modeled using Langmuir and Freundlich adsorption isotherms. The batch study result shows that monolayer Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The correlation coefficient (R2) in the Langmuir isotherm for both metals were 0.84 and 0.97, whereas 0.83 and 0.23 in the Freundlich isotherm, respectively. Based on the present results, application of limestone as adsorbent media can be a good alternative of groundwater treatment because of the low cost of the media. Thus, the use of limestone could help to overcome the excessive iron and manganese problem in water treatment plants.

2016 ◽  
Vol 78 (9-4) ◽  
Author(s):  
Nor Azliza Akbar ◽  
Hamidi Abdul Aziz ◽  
Mohd Nordin Adlan

Adsorption using low cost of media plays more attention to this current research. Previous literature found that high quality of limestone was effective in removing heavy metals in water and wastewater. In this study, the potential use of limestone media was investigated. Groundwater sample and limestone properties were characterized to determine the physical and chemical composition. The batch experiments were conducted to determine the effect of varied dosage and contact time.   Analysis on isotherm and kinetic was carried out in this study. Batch study results showed that the maximum removal of both Fe and Mn was greater than 95 and 80% respectively which occurs at optimum dosage of 40g. Moreover, the optimum contact time of Fe and Mn was 90 and 120 minutes, respectively. At the optimum contact time, 96.8% of Fe and 87.4 % of Mn was removed using limestone adsorbent media. In isotherm study, the result revealed that Langmuir isotherm fitted the experimental data better than Freundlich isotherm for both Fe and Mn adsorption. In Langmuir isotherm, the maximum adsorption capacity for both Fe and Mn were 0.018mg/g and 0.011mg/g. Based on kinetic study, the removal of Fe and Mn followed the pseudo-second order kinetic model which R2 (>0.99) greater than in pseudo-first order. This indicates that the chemisorption is the mechanism of adsorption, which contributed to the Fe and Mn removal from the groundwater sample. Thus, from these results, limestone could be used as an alternative for the removal of Fe and Mn from groundwater


2002 ◽  
Vol 2 (2) ◽  
pp. 229-236 ◽  
Author(s):  
G.F. Ijpelaar ◽  
M. Groenendijk ◽  
J.C. Kruithof ◽  
J.C. Schippers

Fenton process, known as Advanced Oxidation Process for the degradation of organic pollutants in waste and drinking water, was studied for the combination of iron removal and pesticide control in anaerobic groundwater. The combined effect of aeration and rapid sand filtration, which are commonly applied in groundwater treatment, was studied in a pilot plant. Pesticide degradation was performed on laboratory scale. It was found that addition of 2 mg/L H2O2 prior to aeration improved the removal of iron without hindering the filtration processes of manganese removal and nitrification. Under these conditions, the laboratory-scale tests showed pesticide degradations of up to 80% (influent concentration 1.6-2.5 μg/L). Dosing 8.5 mg/L H2O2 all selected pesticides were converted more than 80%. However, this dose appeared to have an adverse effect on the removal of iron and manganese and the nitrification process. This is attributed to the presence of relatively high concentrations H2O2 in the water entering the rapid sand filter. By filtration AOC, formed during oxidation with the low H2O2 dose, was reduced from about 70 μg/L to about 15-20 μg Acetate-C/L. Bromate formation did not occur. Residual H2O2 varied from 0.1-0.2 mg/L (2 mg/L H2O2 dose) to 0.2-0.4 mg/L (8.5 mg/L H2O2 dose) which is higher than the proposed guideline of 0.019 mg/L.


2021 ◽  
Vol 6 (1) ◽  
pp. 50-62
Author(s):  
K.F.K. Oyedeko ◽  
A.S. Akinyanju ◽  
M.K. Lasisi ◽  
R.J. Patinvoh

Textile effluent contains different organic and inorganic pollutants, among these are COD and heavy metals such as lead (Pb), chromium (Cr), cadium (Cd), and copper (Cu) used for the production of color pigments. In this study the adsorption capacity of chitosan produced from snail shells as an adsorbent for the treatment of textile effluent and for the removal of lead (Pb2+) from waste water carried out. Batch experiments were performed to study the treatment of textile waste water and the adsorption of lead Pb2+ion unto chitosan. The effect of various experimental parameters (adsorbent dose, contact time and temperature) was studied, and optimal conditions were determined. Batch adsorption study on textile waste water showed 96.9 % COD removal was achieved for carbon dosage of 15mg carbon/100ml of textile wastewater solution. The equilibrium data were analyzed with Langmuir, Freundlich, Temkin, Elovich, Florry Huggins, Jovanovic, Harkin Jura and Dubinin–Radushkevich (DRK) adsorption models. Freundlich isotherm yielded the best fit to the experimental equilibrium adsorption data with a correlation coefficient (R2 ) of 0.991. The adsorption intensity is 1.68. This was closely followed by Langmuir Isotherm with a correlation coefficient (R2 ) of is 0.943. The maximum monolayer coverage (Qo) from Langmuir isotherm model was determined to be 50.51mg/g, KL (Langmuir isotherm constant) is 0.00374L/mg, RL (the separation factor) is 0.217 indicating that the equilibrium sorption was favorable. Adsorption kinetics data for sorption of Pb2+ion unto chitosan were analyzed using the pseudo first order, pseudo second order and intra particle diffusion models. The results indicated that the adsorption kinetic data were best described by pseudo secondorder model. For the thermodynamic studies, the enthalpy change, ΔH°, and the entropy change, ΔS°, for the adsorption processes are -18.10 kJ/mol and -0.0652KJ/mol K respectively. The free energy, ΔG° for the process are 2186.39 J/mol, 3071.761 J/mol, 3689.615J/mol and 4153.032 J/mol at 303K, 313K, 323 K and 333K respectively. The results of thermodynamic parameters evaluated showed that the process was non spontaneous and exothermic in nature. The results show that chitosan can be used as an alternative low-cost adsorbent for treatment of textile effluent and the removal of COD and lead from wastewater.


Author(s):  
Huiping Zeng ◽  
Can Yin ◽  
Jie Zhang ◽  
Dong Li

In recent years, biological purification technology has been widely developed in the process of iron and manganese removal from groundwater. The cultivation and maturation of the biological filter layer are key for biological iron and manganese removal processes. The time needed for maturation varies significantly with the water quality, filter and filter media conditions and operation parameters; sometimes it takes only one or two months, sometime more than half a year. In this paper, the feasibility of adopting an intermittent operation for the cultivation of biofilter was investigated with productive filters in a groundwater treatment plant, and the comparative test of the filter column was conducted. The results showed that the intermittent operation had little effect on the cultivation of the biofilter because dissolved oxygen would be gradually exhausted during the filter-suspension process, making the filter layer anaerobic, thus possibly inhibiting the growth and reproduction of IMOB (Iron and Manganese Oxidizing Bacteria). At the same time, the test shows that when the mature biological filter needs the suspension operation, the emptying method should be considered to avoid the destruction of the biological layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
T. Sumathi ◽  
G. Alagumuthu

A new low cost adsorbent, activatedMoringa oleiferahas been developed for aqueous arsenic removal. Batch experiments were revealed that As removal was up to 71.3% using activatedMoringa oleifera. Kinetics studies revealed that Langmuir isotherm was followed with a better correlation than the Freundlich isotherm. The thermodynamic parameters such asΔH,ΔS, andΔGwere computed from the experimental data. These values show that the adsorption is endothermic and spontaneous in nature. Thus, this recently developed cost-effective novel biosorbent, activatedMoringa oleiferacan be used as household level to mitigate the arsenic problem.


Author(s):  
Dana A. Da’ana ◽  
Nabil Zouari ◽  
Mohammad Y. Ashfaq ◽  
Mohammed Abu-Dieyeh ◽  
Majeda Khraisheh ◽  
...  

Abstract Purpose of Review This paper reviews various low-cost treatment techniques such as adsorption, permeable reactive barrier, and biological techniques for the simultaneous removal of chemical and microbial contaminants from groundwater and discusses treatment mechanisms of different treatment techniques. This paper also discusses the challenges of groundwater treatment, how to choose the appropriate treatment technique, and cost analysis of groundwater treatment. Recent Findings Various treatment technologies have been used for the treatment of groundwater: physical, chemical, and biological technologies with different success rates. In the literature, various adsorbents have been successfully synthesized from low-cost and environmentally friendly materials. Adsorption is considered an efficient treatment technique for the removal of both toxic elements and pathogens by utilizing different adsorbents. For example, the nanostructures of MgO with a BET surface area of up to 171 m2/g obtained a very high adsorption capacity of 29,131 mg/g for fluoride ions in water, while the incorporation of iron in activated carbon has improved its adsorption capacity to 51.3 mg/g for arsenic. Moreover, certain adsorbents have shown the capability to remove 99% of the rotavirus and adenovirus from groundwater. Summary Groundwater resources are contaminated with toxic metals and pathogens. Therefore, water treatment technologies should be evaluated for their efficiency to remove such contaminants. Determination of the most cost-effective and efficient treatment technique is not an easy task and requires the understanding of various aspects such as the contaminants present in water, the reuse options considered, and cost analysis of the treatment technique.


Author(s):  
Bingbing Qiu ◽  
Xuedong Tao ◽  
Hao Wang ◽  
Wenke Li ◽  
Xiang Ding ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2586
Author(s):  
Inas A. Ahmed ◽  
Ahmed H. Ragab ◽  
Mohamed A. Habila ◽  
Taghrid S. Alomar ◽  
Enas H. Aljuhani

In this work, low-cost and readily available limestone was converted into nanolimestone chitosan and mixed with alginate powder and precipitate to form a triple nanocomposite, namely limestone—chitosan–alginate (NLS/Cs/Alg.), which was used as an adsorbent for the removal of brilliant green (BG) and Congo red (CR) dyes in aqueous solutions. The adsorption studies were conducted under varying parameters, including contact time, temperature, concentration, and pH. The NLS/Cs/Alg. was characterized by SEM, FTIR, BET, and TEM techniques. The SEM images revealed that the NLS/Cs/Alg. surface structure had interconnected pores, which could easily trap the pollutants. The BET analysis established the surface area to be 20.45 m2/g. The recorded maximum experimental adsorption capacities were 2250 and 2020 mg/g for CR and BG, respectively. The adsorption processes had a good fit to the kinetic pseudo second order, which suggests that the removal mechanism was controlled by physical adsorption. The CR and BG equilibrium data had a good fit for the Freundlich isotherm, suggesting that adsorption processes occurred on the heterogeneous surface with a multilayer formation on the NLS/Cs/Alg. at equilibrium. The enthalpy change (ΔH0) was 37.7 KJ mol−1 for CR and 8.71 KJ mol−1 for BG, while the entropy change (ΔS0) was 89.1 J K−1 mol−1 for CR and 79.1 J K−1 mol−1 BG, indicating that the adsorption process was endothermic and spontaneous in nature.


2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


Sign in / Sign up

Export Citation Format

Share Document