Modeling and Simulation Assessment of Solar Photovoltaic/Thermal Hybrid Liquid System Using TRNSYS

2015 ◽  
Vol 813-814 ◽  
pp. 700-706 ◽  
Author(s):  
R. Geetha ◽  
M.M. Vijayalakshmi ◽  
E. Natarajan

The PV/T hybrid system is a combined system consisting of PV panel behind which heat exchanger with fins are embedded. The PV/T system consists of PV panels with a battery bank, inverter etc., and the thermal system consists of a hot water storage tank, pump and differential thermostats. In the present work, the modeling and simulation of a Solar Photovoltaic/Thermal (PV/T) hybrid system is carried out for 5 kWp using TRNSYS for electrical energy and thermal energy for domestic hot water applications. The prominent parameters used for determining the electrical efficiency, thermal efficiency, overall thermal efficiency, electrical thermal efficiency and exergy efficiency are the solar radiation, voltage, current, ambient temperature, mass flow rate of water, area of the PV module etc. The simulated results of the Solar PV/T hybrid system are analyzed for the optimum water flow rate of 25 kg/hr. The electrical efficiency, thermal efficiency, overall thermal efficiency, equivalent thermal efficiency, exergy efficiency are found to be 10%, 34%, 60%, 35% and 13% respectively. The average tank temperature is found to be 50°C.

2015 ◽  
Vol 787 ◽  
pp. 82-87 ◽  
Author(s):  
B. Srimanickam ◽  
M.M. Vijayalakshmi ◽  
Elumalai Natarajan

The objective of present study is to conduct exergy analysis on flat plate solar photovoltaic thermal (PV/T) hybrid system. The solar insolation, current, voltage, inlet and outlet air temperature of the cooling duct, ambient air temperature, and solar panel surface temperature are the major parameters used to calculate the energy and exergy efficiency. An amended electrical efficiency is used to estimate the electrical output and performance of PV/T hybrid system. Further, an enriched equation for the exergy efficiency of a PV/T hybrid system has been used for exergy analysis. Finally, parametric studies have been carried out. An extensive energy and exergy analysis is carried out to calculate the electrical and thermal parameters. The experimental results are in good agreement with the earlier studies. In addition to that, the electrical efficiency, thermal efficiency, electrical thermal efficiency, overall energy efficiency and exergy efficiency of PV/T hybrid system is found to be about 9.78%, 24.22%, 27.17%, 44.84% and 11.23% respectively.


2018 ◽  
Vol 8 (10) ◽  
pp. 1973 ◽  
Author(s):  
Adnan Ploskić ◽  
Qian Wang ◽  
Sasan Sadrizadeh

The aim of this study was to map the parameters that have the greatest impact on the environmental impact of heating systems usually used in Nordic single-family dwellings. The study focused on mapping the technical requirements for efficient operation of heating systems in a broader context. The results suggest that the ability of a heating system to be operated with a low-temperature water supply depends to a large extent on the heating demand of a building. It was shown that an increase in the water flow rate in hydronic circuits would significantly increase the thermal efficiency from analyzed heating systems. This increase would not increase the pumping power need, nor would it create noise problems in distribution network if the distribution pipes and thermostatic valves were properly selected. However, this increase in water flow rate improved the efficiency of considered closed-loop heat pump. It was further shown that the efficiency of the heat pump could be additionally improved by halving the energy needs for the domestic hot-water and circulators. The main conclusion from this study is that exergy usage, CO2 emission and thereby environmental impact are significantly lower for heating systems that are operated with small temperature drops.


2021 ◽  
Vol 13 (21) ◽  
pp. 11654
Author(s):  
Roozbeh Vaziri ◽  
Akeem Adeyemi Oladipo ◽  
Mohsen Sharifpur ◽  
Rani Taher ◽  
Mohammad Hossein Ahmadi ◽  
...  

Analyzing the combination of involving parameters impacting the efficiency of solar air heaters is an attractive research areas. In this study, cost-effective double-pass perforated glazed solar air heaters (SAHs) packed with wire mesh layers (DPGSAHM), and iron wools (DPGSAHI) were fabricated, tested and experimentally enhanced under different operating conditions. Forty-eight iron pieces of wool and fifteen steel wire mesh layers were located between the external plexiglass and internal glass, which is utilized as an absorber plate. The experimental outcomes show that the thermal efficiency enhances as the air mass flow rate increases for the range of 0.014–0.033 kg/s. The highest thermal efficiency gained by utilizing the hybrid optimized DPGSAHM and DPGSAHI was 94 and 97%, respectively. The exergy efficiency and temperature difference (∆T) indicated an inverse relationship with mass flow rate. When the DPGSAHM and DPGSAHI were optimized by the hybrid procedure and employing the Taguchi-artificial neural network, enhancements in the thermal efficiency by 1.25% and in exergy efficiency by 2.4% were delivered. The results show the average cost per kW (USD 0.028) of useful heat gained by the DPGSAHM and DPGSAHI to be relatively higher than some double-pass SAHs reported in the literature.


2021 ◽  
Vol 39 (4) ◽  
pp. 1117-1122
Author(s):  
Win Eng Ewe ◽  
Ahmad Fudholi ◽  
Kamaruzzaman Sopian ◽  
Nilofar Asim

This research demonstrates how to develop a novel energy balance equation to investigate heat transmission between the components of a bifacial photovoltaic-thermal (PVT) air heater with a jet plate. The temperature output and efficiency of the system are shown. A greater mass flow rate reduces the exit air temperature and increases the thermal efficiency of the thermal component. Increased sun irradiation raises the output air temperature and thermal efficiency. In terms of electrical efficiency, a greater mass flow rate reduces the temperature of the PV panel while increasing electrical efficiency. On the other hand, higher solar irradiation raises the temperature of the PV panel, lowering its electrical efficiency. The maximum thermal efficiency of BPVTJPR is 51.09% under the circumstances of 12 PV cells with a packing factor of 0.66, a jet plate reflector with 36 holes, 900 W/m2 solar irradiances, and a mass flow rate of 0.035 kg/s. The maximum electrical efficiency of BPVTJPR is 10.73% under the circumstances of 12 PV cells with a packing factor of 0.66, a jet plate reflector with 36 holes, 700 W/m2 solar irradiances, and a mass flow rate of 0.035 kg/s.


Author(s):  
Le Minh Nhut ◽  
Tran Quang Danh

Hot water is an important factor in domestic life and industrial development. Today, the heat pump is used to produce hot water more and more popular because it has many advantages of saving energy compared to the method of producing hot water by the hot water electric heater. The main aim of this study is to evaluate of the coefficient of performance (COP) of the small hot water heat pump using refrigeration R410A and R32. The capacity of both hot water heat pump is similar, one using new refrigerant R32 and other using refrigerant R410A. These heat pumps were designed and installed at the Ho Chi Minh City University of Technology and Education to evaluate the COP for the purpose of application the new refrigerant R32 for hot water heat pump. The compressor capacity is 1 Hp, the volume of hot water storage tank is of 100 liters and is insulated with thickness of 30 mm to reduce the heat loss to invironment, the required hot water temperature at the outlet of condenser is 50 oC, and the amount of required hot water is 75 liters per batch and is controlled by float valve. The experimental results indicate that the COP of the heat pump using the new refrigerant R32 is higher than heat pump using refrigerant R410A from 9% to 15% when the experimental conditions such as ambient temperature, initial water flow rate through the condenser and the required temperature of hot water were the same. In addition, the effect of the ambient temperature, initial water temperature and water flow rate were also evaluated.


Author(s):  
Wenzhi Cui ◽  
Quan Liao ◽  
Longjian Li ◽  
Songqiang Yu

A dynamic model is developed to analysis the transient characteristics of hybrid photovoltaic/thermal solar energy system. Two typical climatic conditions, clear day and hazy day, are considered in the present study. The daily and annual variation of hot water temperature, electrical output, thermal efficiency and electrical efficiency are calculated and analyzed. The results show that the solar irradiance is the critical factor that affects the variation of the water temperature, electrical output and electrical efficiency of the PV/T system. The thermal efficiency of the system has also a certain relation to the daily fluctuation of solar radiation.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3063 ◽  
Author(s):  
Joo Hee Lee ◽  
Seong Geon Hwang ◽  
Gwi Hyun Lee

Many studies and considerable international efforts have gone into reducing greenhouse gas emissions. This study was carried out to improve the efficiency of flat-plate photovoltaic thermal (PVT) systems, which use solar energy to produce heat and electricity simultaneously. An efficiency analysis was performed with various flow rates of water as the working fluid. The flow rate, which affects the performance of the PVT system, showed the highest efficiency at 3 L/min compared with 1, 2, and 4 L/min. Additionally, the effects of nanofluids (CuO/water, Al2O3/water) and water as working fluids on the efficiency of the PVT system were investigated. The results showed that the thermal and electrical efficiencies of the PVT system using CuO/water as a nanofluid were increased by 21.30% and 0.07% compared to the water-based system, respectively. However, the increase in electrical efficiency was not significant because this increase may be due to measurement errors. The PVT system using Al2O3/water as a nanofluid improved the thermal efficiency by 15.14%, but there was no difference in the electrical efficiency between water and Al2O3/water-based systems.


2018 ◽  
Vol 3 ◽  
pp. 3 ◽  
Author(s):  
Kheira Tabet Aoul ◽  
Ahmad Hasan ◽  
Hassan Riaz

Building applied solar thermal systems are considered by different stakeholders an attractive alternative to traditional space and water heating systems. However, their performance depends largely on climatic conditions, water heating needs and operational parameters which, in turn, offer opportunities for performance optimization. The present research attempts to provide architects with a design decision tool that integrates solar thermal collectors efficiently to meet hot water demand for various building types inclusive of residential, commercial and industrial in a hot climate. The analysis is conducted numerically through a thermal model developed and executed in TRNSYS and validated experimentally. The parameters investigated include the collector tilt angle, azimuth angle and collector inlet fluid flow rate. Finally, the collector aperture area required per building foot print area is determined. The research revealed that for a 1000 m2 footprint building area of schools, offices, residential, factories and hospitals would require respectively 8 m2, 10 m2, 14 m2, 24 m2 and 38 m2 of the static collector installed at 24° tilt angle with optimal water flow rate. Additional operational aspects of collector tracking, and solar radiation concentration were investigated and further reduce the required collector area. A simple payback period analysis reveals a return on investment of 2 years applying subsidized tariff rates under the climatic conditions of, or similar to Dubai, in the United Arab Emirates.


1998 ◽  
Vol 38 (4) ◽  
pp. 409 ◽  
Author(s):  
Ibrahim E. A. Elbatawi

Summary. The outdoor air temperature is not constant especially in spring in Okayama city. The average night temperature ranges from –2 to 20°C which is too low for the germination of most seeds. A good knowledge of the future outdoor air temperature is necessary to decide if greenhouse heating is needed for the next day. Using measured temperatures from the preceding days and considering the minimum and maximum temperatures given by the weather forecast, it was possible to accurately compute the temperature for the next day. Pumpkin, eggplant and tomato seeds were used in this study. A solar system was used to heat the air inside a greenhouse at night using an air–water–air heat exchanger and make a comparison with an unheated greenhouse. The performance of the solar collector and methods of heat exchange were tested. It was shown that the solar energy collected was sufficient for warming a nursery greenhouse overnight. The system operated with a hot water flow rate of 0.647 L/min and an air flow rate of 9.21 m3/min and could maintain the greenhouse temperature between 16 and 20°C. The quantity of heat collected and delivered by the solar system from incident solar radiation was about 50% in a day. Heating the air inside the greenhouse at night produced 100% germination for all seedlings. In comparison, in the unheated greenhouse the germination ratio was 100, 93 and 27% for pumpkin, eggplant and tomato respectively. The germination ratio outside the greenhouses was 100% for pumpkin, 67% for eggplant and zero for tomato.


Sign in / Sign up

Export Citation Format

Share Document