Numerical Simulation of Rotational Behavior of Bolted Glulam Beam-to-Column Connections with Slotted-In Steel Plates

2016 ◽  
Vol 858 ◽  
pp. 22-28 ◽  
Author(s):  
Ming Qian Wang ◽  
Xiao Bin Song ◽  
Xiang Lin Gu

This paper presents the results of a numerical study on rotational behavior of bolted glulam beam-to-column connections. Since wood often exhibited complex failure behavior under different loading states, a three dimensional anisotropic damage analysis model of wood was initially developed based on continuum damage mechanics theory for progressive failure analysis of wood. The damage model basically consisted of two ingredients: the failure criterion proposed by Sandhaas was chosen to capture the damage onset; three independent damage variables were adopted to control the ductile and brittle damage evolution process of wood. This material model was implemented in a commercial available finite element method based code using a user-material subroutine. Finite element model of bolted connection coupled with the proposed material model was established to further investigate the failure modes and moment resistance of such connections. It was found that the damage evolution progress was very similar to the crack development from experimental tests. By comparing the experimental results and numerical predictions, a fair agreement of the initial stiffness and moment resistance was found with modeling error less than 3%, which implied that the finite element model was suitable to simulate the rotational behavior of such connections. This research could provide the reference for the design of bolted glulam connections in heavy timber structures.

2020 ◽  
Vol 23 (9) ◽  
pp. 1989-2000
Author(s):  
Xiaoluan Sun ◽  
Yiheng Qu ◽  
Weiqing Liu ◽  
Weidong Lu ◽  
Shenglin Yuan

In this article, the rotational behavior of typical bolted glulam beam-to-column connections with slotted-in steel plate was studied in the numerical method. In order to describe the complicated behavior of wood more closely, an elastic–plastic damage constitutive law combining the Hill yielding criterion and a modified Hashin failure criterion was embedded in the commercial ABAQUS software in the form of a VUMAT subroutine. Subsequently, a three-dimensional finite element model based on the constitutive law proposed was established, with the failure mode and moment–rotation curve compared to some similar experiments. Based on this finite element model, a parametric study concentrating on the influence of the width of the beam, bolt diameter, and assembly clearance was carried out. It was found that the numerical method using the proposed constitutive law showed a good capacity to study the rotational behavior of the connections. Besides, the initial rotational stiffness increased with the increase in beam width and bolt diameter, and the assembly clearances between bolts and bolt holes would affect the initial rotational stiffness while the assembly clearance between beam and column affected little.


2019 ◽  
Vol 14 ◽  
pp. 155892501988640
Author(s):  
Xiao-Shun Zhao ◽  
He Jia ◽  
Zhihong Sun ◽  
Li Yu

At present, most space inflatable structures are composed of flexible inflatable fabrics with complex undevelopable surfaces. It is difficult to establish a multi-dimensional folding model for this type of structure. To solve this key technical problem, the motion folding method is proposed in this study. First, a finite element model with an original three-dimensional surface was flattened with a fluid structure interaction algorithm. Second, the flattened surface was folded based on the prescribed motion of the node groups, and the final folding model was obtained. The fold modeling process of this methodology was consistent with the actual folding processes. Because the mapping relationship between the original finite element model and the final folding model was unchanged, the initial stress was used to modify the model errors during folding process of motion folding method. The folding model of an inflatable aerodynamic decelerator, which could not be established using existing folding methods, was established by using motion folding method. The folding model of the inflatable aerodynamic decelerator showed that the motion folding method could achieve multi-dimensional folding and a high spatial compression rate. The stability and regularity of the inflatable aerodynamic decelerator numerical inflation process and the consistency of the inflated and design shapes indicated the reliability, applicability, and feasibility of the motion folding method. The study results could provide a reference for modeling complex inflatable fabrics and promote the numerical study of inflatable fabrics.


2019 ◽  
Vol 56 (4) ◽  
pp. 411-434
Author(s):  
Alejandro E Rodríguez-Sánchez ◽  
Héctor Plascencia-Mora ◽  
Elías R Ledesma-Orozco ◽  
Eduardo Aguilera-Gómez ◽  
Diego A Gómez-Márquez

The expanded polystyrene foam is widely used as a protective material in engineering applications where energy absorption is critical for the reduction of harmful dynamic loads. However, to design reliable protective components, it is necessary to predict its nonlinear stress response with a good approximation, which makes it possible to know from the engineering design analysis the amount of energy that a product may absorb. In this work, the hyperfoam constitutive material model was used in a finite element model to approximate the mechanical response of an expanded polystyrene foam of three different densities. Additionally, an experimental procedure was performed to obtain the response of the material at three loading rates. The experimental results show that higher densities at high loading rates allow better energy absorption in the expanded polystyrene. As for the energy dissipation, high dissipation is obtained at higher densities at low loading rates. In the numerical results, the proposed finite element model presented a good performance since root mean square error values below 9% were obtained around the experimental compressive stress/strain curves for all tested material densities. Also, the prediction of energy absorption with the proposed model was around a maximum error of 5% regarding the experimental results. Therefore, the prediction of energy absorption and the compressive stress response of expanded polystyrene foams can be studied using the proposed finite element model in combination with the hyperfoam material model.


2014 ◽  
Vol 553 ◽  
pp. 769-773 ◽  
Author(s):  
E.A. Flores-Johnson ◽  
J.G. Carrillo ◽  
R.A. Gamboa ◽  
Lu Ming Shen

In this work, a 3D finite-element model of the ballistic impact of a multi-layered plain-woven aramid fabric style 720 (Kevlar®129 fibre, 1420 denier, 20×20 yarns per inch) impacted by a 6.7-mm spherical projectile was built at the mesoscale in Abaqus/Explicit by modelling individual crimped yarns. Material properties and yarn geometry for the model were obtained from reported experimental observations. An orthotropic elastic model with a failure criterion based on the tensile strength of the yarns was used. Numerical predictions were compared with available experimental data. It was found that the finite-element model can reproduce the physical experimental observations, such as the straining of primary yarns and pyramidal-shaped deformation after perforation. The permanent deformation of fabric targets predicted by the numerical simulations was compared with available experimental results. It was found that the model fairly predicted the permanent deformation with a difference of about 21% when compared with experiments.


2014 ◽  
Vol 629 ◽  
pp. 498-502 ◽  
Author(s):  
K.A. Kamarudin ◽  
Al Emran Ismail

This paper explains the utilisation of finite element model to analyse the ballistic limit of aluminium alloy 7075-T6 impacted by 8.33 g with 12.5 mm radius rigid spherical projectiles. This numerical study was compared with the results obtained experimentally. During impact, the targets were subjected to either non- or uniaxial- pretension and the projectile travelled horizontally to the target. It was observed that pretensioned targets were more vulnerable, which reduced the ballistic limit. The existence of harmful failures owing to pretension impact was ascertained and compared with the non-pretension targets.


Author(s):  
Thomas Maywald ◽  
Christoph R. Heinrich ◽  
Arnold Kühhorn ◽  
Sven Schrape ◽  
Thomas Backhaus

Abstract It is widely known that the vibration characteristics of blade integrated discs can dramatically change in the presence of manufacturing tolerances and wear. In this context, an increasing number of publications discuss the influence of the geometrical variability of blades on phenomena like frequency splitting and mode localization. This contribution is investigating the validity of a stiffness modified reduced order model for predicting the modal parameters of a geometrically mistuned compressor stage. In detail, the natural frequencies and mode shapes, as well as the corresponding mistuning patterns, are experimentally determined for an exemplary rotor. Furthermore, a blue light fringe projector is used to identify the geometrical differences between the actual rotor and the nominal blisk design. With the help of these digitization results, a realistic finite element model of the whole compressor stage is generated. Beyond that, a reduced order model is implemented based on the nominal design intention. Finally, the numerical predictions of the geometrically updated finite element model and the stiffness modified reduced order model are compared to the vibration measurement results. The investigation is completed by pointing out the benefits and limitations of the SNM-approach in the context of geometrically induced mistuning effects.


2014 ◽  
Vol 611 ◽  
pp. 188-193 ◽  
Author(s):  
Vladimír Ivančo ◽  
Gabriel Fedorko ◽  
Ladislav Novotný

In the paper, the influence of material model selection on the behaviour of Finite Element model of a compressed thin-walled channel is studied. Results of three material models of channels of two different lengths and two types of geometric imperfections are compared and discussed.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 316
Author(s):  
Jafar A. Mehr ◽  
Heather E. Moss ◽  
Hamed Hatami-Marbini

Flattening of the posterior eye globe in the magnetic resonance (MR) images is a sign associated with elevated intracranial pressure (ICP), often seen in people with idiopathic intracranial hypertension (IIH). The exact underlying mechanisms of globe flattening (GF) are not fully known but mechanical factors are believed to play a role. In the present study, we investigated the effects of material properties and pressure loads on GF. For this purpose, we used a generic finite element model to investigate the deformation of the posterior eyeball. The degree of GF in numerical models and the significance of different mechanical factors on GF were characterized using an automated angle-slope technique and a statistical measure. From the numerical models, we found that ICP had the most important role in GF. We also showed that the angle-slope graphs pertaining to MR images from five people with high ICP can be represented numerically by manipulating the parameters of the finite element model. This numerical study suggests that GF observed in IIH patients can be accounted for by the forces caused by elevation of ICP from its normal level, while material properties of ocular tissues, such as sclera (SC), peripapillary sclera (PSC), and optic nerve (ON), would impact its severity.


2010 ◽  
Vol 455 ◽  
pp. 521-524
Author(s):  
Yong Tang ◽  
Bang Yan Ye ◽  
X.F. Hu ◽  
Qiang Wu

This paper studies drilling force of pore for hard-cutting material based on theoretical and experimental investigation during pore drilling process. A coupled thermo-mechanical finite element model of metal pore drilling process was established. Some key techniques such as material model, chip separation and damage criteria and dynamic mesh self-adapting technology in the finite element simulation of metal cutting process were discussed in details. The paper simulated dynamically the chip formation of the twist drilling process in which rigid plastic material model was selected for workpieces and thermal rigid models for tools. The results indicate that the proposed finite element model is not only correct but also feasible in the prediction of the variations of drilling force and torque with amount of feed.


Sign in / Sign up

Export Citation Format

Share Document