Development of Epoxy Grout Containing Fine Waste from Production of Mineral Wool Board Insulation

2018 ◽  
Vol 878 ◽  
pp. 275-280 ◽  
Author(s):  
Jakub Hodul ◽  
Tomáš Žlebek ◽  
Rostislav Drochytka

Within this work, it was experimentally verified that the waste from mineral wool board insulation production (WIRG) with high portion of glass recyclate (> 80%) and no organic material seems like ideal filler for polymer grouting materials. The main objective was to develop a progressive grout on epoxy basis with as high content of this secondary raw material as possible, while achieving physical and mechanical properties as e.g. very fast strength increase and high thermal resistance. With regard to the consistency of epoxy grout in the fresh state, three different filling were tested, namely 60%, 65% and 70%. The grout with lower filling is too fluid, and it is also disadvantageous from an economic point of view because a large amount of epoxy resin is used. On the other hand, at higher filing, it is not possible to mix the filler into epoxy resin properly. Setting of an optimal filler content in the mixture was performed mostly on the basis of the results of compressive and three-point flexural strength test. It was found out that the optimal amount of the filler is 65%. In case of the best formulation with optimal filler content (65% WIRG), the thermal resistance was monitored by determination of the glass transition temperature (Tg) by the dynamic mechanical analysis (DMA) method. Furthermore, the optical microscope with high resolution was used to monitor filler distribution and homogeneity of the hardened developed epoxy grout.

2019 ◽  
Vol 10 (3) ◽  
pp. 53-60
Author(s):  
V. Z Abdrakhimov

The environmental situation in Russia is characterized by a high level of anthropogenic impact on the environment, significant environmental consequences of past economic activity. Their disposal and storage costs 8-10 % of the cost of products, so the disposal of such waste is of paramount importance.Due to the involvement of multi-tonnage waste in the production of ceramic materials of mass consumption, which include wall materials, it is possible to radically change the parameters of the raw material base of Russia, which also helps to reduce environmental tensions in the regions. The reduction of reserves of traditional natural raw materials makes us look for new ways to replace it with different types of waste. The experience of advanced foreign countries has shown the technical feasibility of this area and the use of more as a tool to protect the environment from pollution. However, almost all basic building materials can be made from waste or from waste in combination with natural raw materials. On the basis of fusible clay and waste basalt-gabbro-norite charge, which is formed in the production of mineral wool obtained ceramic brick with high physical and mechanical properties, brick grade M150 and above. The absolute advantage of the use of multi-tonnage waste is the unloading of the environmental situation, which contributes to the solution of industrial waste disposal and environmental protection. Innovative proposals for the use of waste from the production of mineral wool in the production of wall materials - ceramic bricks based on fusible clay, the novelty of which is confirmed by patents of the Russian Federation.


2015 ◽  
Vol 55 (3) ◽  
Author(s):  
Anna Borisova ◽  
Tatiana Glaskova-Kuzmina ◽  
Andrey Aniskevich

Dilatometric tests, thermal mechanical analysis (TMA), quasistatic tensile tests, hydrostatic weighting, and scanning electron microscopy (SEM) were performed on the multiwalled carbon nanotube (MWCNT)/epoxy nanocomposite (NC) with different filler content (c = 0–3.8% wt.) in order to determine the influence of MWCNT content on the thermophysical and mechanical properties of NC. The experimental results show the physical properties versus the nanofiller content and the existence of the optimal MWCNT content (1% wt.) in epoxy resin that maximally improves the thermophysical properties of NC in comparison with unfilled epoxy. Thus, NC with 1% wt. filler content shows the maximal decrease of thermal expansion coefficient by 68%, the maximal increase of glass transition temperature and tensile strength by 23 °C and 18%, respectively. Comparing the results it can be seen that after exceeding the defined optimal filler content over 1% wt. the investigated properties get worse. The correlation between the investigated mechanical and thermophysical properties is estimated and reported.


Author(s):  
Abdrakhimov

Environmental security is currently one of the main components of the national security of the Russian Federation and includes not only control over the state of the environment, but also the implementation of measures to prevent the occurrence of environmental crises and disasters. The reduction of reserves of tradi-tional natural raw materials makes us look for new ways to replace it with different types of waste. The expe-rience of advanced foreign countries has shown the technical feasibility of this area and the use of more as a tool to protect the environment from pollution. However, almost all basic building materials can be made from waste or from waste in combination with natural raw materials. Due to the involvement of multi-tonnage waste in the production of ceramic materials of mass consumption, which include ceramic bricks, it is possi-ble to radically change the parameters of the raw material base of Russia, which also helps to reduce envi-ronmental tensions in the regions. Production of ceramic bricks  one of the most material-intensive sectors of the economy, so the rational use of fuel, raw materials and other material resources is a decisive factor in its successful development in the context of economic reform. In this regard, the use of waste in ceramic mate-rials is of particular relevance. On the basis of beidellite clay, waste: energy ─ ash and slag material and non-ferrous metallurgy ─ sludge Nickel-skeletal catalyst obtained ceramic brick with high physical and mechanical properties. Innova-tive proposals for the use of waste from the production of mineral wool in the production of wall materials – ceramic bricks based on fusible clay, the novelty of which is confirmed by a patent of the Russian Federation.


2019 ◽  
Vol 16 (2) ◽  
pp. 27 ◽  
Author(s):  
Ahmad Aizuddin Ariffin ◽  
Nik Noor Idayu Nik Ibrahim ◽  
Solehuddin Shuib ◽  
Ahmad Zafir Romli ◽  
Nur Faiqa Ismail

Surface topography and morphological behaviours are the important aspects in the application of surface bearing as it deals with the contact area of objects upon motion. Improved surface bearing will be set as an indicator for tribology behaviour to reduce the possibility of wear rate and reduce the friction of objects, respectively. Thus, in this study, the fundamental of micro bearing concept was imparted as the Ultra High Molecular Weight Polyethylene (UHMWPE), which is a low density filler, will float onto the surface of the composite system to become a solid lubricant upon curing. UHMWPE filler, which is commonly known for its dominant properties of high tendency to resist wear and has low coefficient of friction were fabricated alongside epoxy resin in the composite system to achieve the desired strength and durability to perform over time. However, there are limitations of UHMWPE during processing upon the dispersion of the fillers with the matrix particles due to epoxy resin that has relatively high in viscosity. Therefore, acetone has been selected as a diluent with ratio of 1:1/4, 1:1/3, 1:1/2, 1:1 to dilute the high viscosity epoxy resin. The surface profile measurement were examined using Alicona Infinite Focus and Polarized Optical Microscope. Based on the results observed, EpUPE3 (epoxy and UHMWPE with acetone ratio of 1:1/2) showed better surface distribution and morphology with  relatively  low value of surface roughness (Ra) which is 1.41 µm and low pseuodocolour value of surface height which is around 6.76-6.77 cm compared to other formulation ratio. In near future, these surface topography and morphological analysis are important to relate with tribological, physical and mechanical properties of the micro bearing layers for bearing applications, specifically.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud Haghighi ◽  
Hossein Golestanian ◽  
Farshid Aghadavoudi

Abstract In this paper, the effects of filler content and the use of hybrid nanofillers on agglomeration and nanocomposite mechanical properties such as elastic moduli, ultimate strength and elongation to failure are investigated experimentally. In addition, thermoset epoxy-based two-phase and hybrid nanocomposites are simulated using multiscale modeling techniques. First, molecular dynamics simulation is carried out at nanoscale considering the interphase. Next, finite element method and micromechanical modeling are used for micro and macro scale modeling of nanocomposites. Nanocomposite samples containing carbon nanotubes, graphene nanoplatelets, and hybrid nanofillers with different filler contents are prepared and are tested. Also, field emission scanning electron microscopy is used to take micrographs from samples’ fracture surfaces. The results indicate that in two-phase nanocomposites, elastic modulus and ultimate strength increase while nanocomposite elongation to failure decreases with reinforcement weight fraction. In addition, nanofiller agglomeration occurred at high nanofiller contents especially higher than 0.75 wt% in the two-phase nanocomposites. Nanofiller agglomeration was observed to be much lower in the hybrid nanocomposite samples. Therefore, using hybrid nanofillers delays/prevents agglomeration and improves mechanical properties of nanocomposite at the same total filler content.


2011 ◽  
Vol 80-81 ◽  
pp. 431-435 ◽  
Author(s):  
Zheng Cun Zhou ◽  
J. Du ◽  
H. Yang ◽  
S.Y. Gu ◽  
Y.J. Yan

Ti-Nb alloys were prepared by powder metallurgy. Their microstructures are detected by the XRD diffraction and are observed using an optical microscope. The mechanical properties are tested using a dynamic mechanical analysis (DMA) Q800 from TA Instruments in single cantilever mode and using a 100 KN MTS testing machine with control software. It has been found that the sintered Ti-Nb alloys possess the stable α and β phases and the amount in β phase increases with increasing Nb content. The water quenched Ti-35.4Nb alloy contains α,,and βM. The as-sintered alloy has higher yield stress and storage modulus than the water quenched Ti-35.4Nb alloy, which is resulted from the α phase with high modulus in the as-sintered alloy. The ω phase can be precipitated from βMwhen the water quenched Ti-35.4Nb alloy is aged at 300 °C, causing the modulus to increase since ω phase has large modulus.


2011 ◽  
Vol 23 (7) ◽  
pp. 526-534 ◽  
Author(s):  
Yang Wang ◽  
Boming Zhang ◽  
Jinrui Ye

Hybrid nanocomposites were successfully prepared by the incorporation of polyethersulfone (PES) and organoclay into epoxy resin. They had higher fracture toughness than the prepared PES/epoxy blend and organoclay/epoxy nanocomposites. The microstructures of the hybrid nanocomposites were studied. They were comprised of homogeneous PES/epoxy semi-interpenetrating network (semi-IPN) matrices and organoclay micro-agglomerates made up of tactoid-like regions composed of ordered exfoliated organoclay with various orientations. The former was confirmed with dynamic mechanical analysis, scanning electron microscopy and transmission electron microscopy, while the latter was successfully observed with X-ray diffraction measurements, optical microscope, scanning electron microscope and transmission electron microscope. The improvement of their fracture toughness was due to the synergistic toughening effect of the PES and the organoclay and related to their microstructures.


1972 ◽  
Vol 3 (3) ◽  
pp. 303-305
Author(s):  
Z. Yu. Sakalauskas ◽  
Ya. K. Matskevichene ◽  
Yu. I. Baltakite ◽  
I. I. Zdanavichyus

2015 ◽  
Vol 22 (3) ◽  
pp. 139-141
Author(s):  
Md. Rahaman ◽  
Khurshid Akhter ◽  
S. Hossain ◽  
Md. Islam

Woods of Albizia richardiana has been studied for assessing the suitability for plywood and particleboard manufacture. It was found that 1.5 mm thick smooth and figured veneer can be peeled and dried easily. Three-ply plywood were made using veneer of this species bonded with liquid urea formaldehyde glue of 50% solid content extended with wheat flour and catalyzed (ammonium chloride) with 2% hardener under the three specific pressures, viz,1.05 N/mm2, 1.40 N/mm2, 1.76 N/mm2 in three replications at 6 minute press time and 120°C press temperature. Dry and wet shear test were conducted on the sample and their shear load at failure per unit area and percentage of wood failure were determined. 1.05 N/mm2 pressure for the manufacture of plywood was found to be the best. The physical and mechanical properties of Albizia richardiana wood particleboard were studied. The particleboards were tested for determining the strength and dimensional stability. The tensile strength 0.56N/mm2 passed the British and German standard specification, bending strength (modulus of rupture10.80N/mm2) was found nearest to Indian Standard but low German and British standard specification.


Sign in / Sign up

Export Citation Format

Share Document