Compatibilization of Thermoplastic Polyurethane and Polypropylene with a SEBS Compatibilizer

2014 ◽  
Vol 1025-1026 ◽  
pp. 605-614
Author(s):  
Ocelić Bulatović Vesna ◽  
Govorčin Bajsić Emi ◽  
Filipan Veljko

The effect of styrene-ethylene/buthylene-styrene triblock copolymer (SEBS) on the thermal and rheological properties of thermoplastic polyurethane/polypropylene (TPU/PP) blends was investigated. For the selection of polymer materials and polymer blends for various fields of applications the stability of materials under constant deformation are very important. The blends were therefore characterized by measuring secondary viscoelastic functions creep, recovery and creep modulus using dynamic mechanical analysis (DMA) in the creep fatigue regime. The master curves at the reference temperature of 25°C were created by time-temperature correspondence (TTC) principle. The correlation of the creep modulus with time, temperature and addition of compatibilizer was discussed. The differential scanning calorimetry (DSC) results indicated that the addition of SEBS as a compatibilizer in TPU/PP blends increases glass transition temperature (Tg) and decreases crystallinity (χc). SEBS block copolymer acts as an efficient compatibilizer for TPU/PP blends.

e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek

Abstract Thermoplastic polyurethanes (TPU) are an important class of elastomers that found many novel and specialized applications where high mechanical and chemical performances are prerequisites. They are known for their good mechanical strength, wear and tear resistance, and low-temperature elasticity. The aim of this work is to study the viscoelastic behaviour of TPU, polypropylene (PP) and their blends using dynamic mechanical analysis. Blends of TPU+PP as well as samples of pure TPU and PP were prepared using a laboratory twin-screw extruder. Primary and secondary viscoelastic functions were determined. Primary viscoelastic functions, viz. storage modulus, loss modulus and loss tangent, were evaluated in the temperature range -100 to 250°C. The secondary viscoelastic functions creep, recovery and creep modulus were investigated in the creepfatigue regime at 25 - 65°C. A master curve at the reference temperature 25°C for the creep modulus of TPU, PP and TPU+PP blends was created by applying the time-temperature correspondence principle. The obtained results are discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2013 ◽  
Vol 849 ◽  
pp. 121-126 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Filipan Veljko ◽  
Vesna Ocelić Bulatović

The effect of the silane treated talc on the mechanical and thermal properties of talc filled thermoplastic polyurethane/polypropylene blends (TPU/PP blends) was investigated. Thermoplastic polyurethane and polypropylene are partially miscible due to the lack of interfacial interaction between the nonpolar crystalline PP and polar TPU. Blends of TPU and PP with silane treated and untreated-talc were prepared using melt blending in a laboratory twin-screw extruder. Organosilane (3-glycidoxypropyl-trimetoxy silane coupling agent) was used to treat talc in order to improve the affinity between the filler and the TPU/PP blends. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and mechanical (tensile test) measurements were used to characterize the talc filled and silane treated talc filled composites and TPU/PP/talc blends. The addition of silane treated and untreated talc in TPU/PP blends improved miscibility in all investigated TPU/PP/talc blends. The silane treatment increases the storage modulus in all investigated TPU/PP/talc blends in comparison with that of the untreated TPU/PP/talc blends. The obtained DSC results show that the addition of silane treated talc increases the degree of crystallinity (χc) of TPU/PP/talc blends because of the improved adhesion between the polymer and the treated talc. Addition of silane treated talc improved the mechanical properties as compared to TPU/PP/talc blends without chemical modification of talc. The results of strength correlate to the values of the storage modulus and crystallinity of the investigated TPU/PP/talc blends.


2021 ◽  
Vol 9 ◽  
Author(s):  
Linda Salminen ◽  
Erno Karjalainen ◽  
Vladimir Aseyev ◽  
Heikki Tenhu

This article introduces butyl acrylate-based materials that are toughened with dynamic crosslinkers. These dynamic crosslinkers are salts where both the anion and cation polymerize. The ion pairs between the polymerized anions and cations form dynamic crosslinks that break and reform under deformation. Chemical crosslinker was used to bring shape stability. The extent of dynamic and chemical crosslinking was related to the mechanical and thermal properties of the materials. Furthermore, the dependence of the material properties on different dynamic crosslinkers—tributyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C4ASA) and trihexyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C6ASA)—was studied. The materials’ mechanical and thermal properties were characterized by means of tensile tests, dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. The dynamic crosslinks strengthened the materials considerably. Chemical crosslinks decreased the elasticity of the materials but did not significantly affect their strength. Comparison of the two ionic crosslinkers revealed that changing the crosslinker from C4ASA to C6ASA results in more elastic, but slightly weaker materials. In conclusion, dynamic crosslinks provide substantial enhancement of mechanical properties of the materials. This is a unique approach that is utilizable for a wide variety of polymer materials.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1910 ◽  
Author(s):  
Manuel Asensio ◽  
Victor Costa ◽  
Andrés Nohales ◽  
Otávio Bianchi ◽  
Clara M Gómez

Segmented thermoplastic polyurethanes (PUs) were synthetized using macrodiols with different functional groups (carbonate, ester, and /or ether) as a segment with a molar mass of 1000 and 2000 g/mol, and 4,4’-diphenylmethane diisocyanate (MDI) and 1,4-butanediol as a rigid segment. The polyurethanes obtained reveal a wide variation of microphase separation degree that is correlated with mechanical properties and retention of tensile properties under degradation by heat, oil, weather, and water. Different techniques such as differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR), and synchrotron small-angle X-ray scattering (SAXS) were used to determine rigid-flexible segments’ phase behaviour. Retention of tensile properties determines the stability of the samples under different external factors. This work reveals that pure polycarbonate-based macrodiols induce the highest degree of phase miscibility, better tensile properties, hardness shore A, and retention of tensile properties under external agents.


2021 ◽  
Vol 60 (1) ◽  
pp. 479-489
Author(s):  
Konstantinos Karvanis ◽  
Soňa Rusnáková ◽  
Ondřej Krejčí ◽  
Alena Kalendová

Abstract In this study, aramid fiber-reinforced polymer (AFRP) composites were prepared and then postcured under specific heating/cooling rates. By dynamic mechanical analysis, the viscoelastic properties of the AFRP composites at elevated temperatures and under various frequencies were determined. Thermomechanical analysis (TMA), in the modes of creep-recovery and stress–relaxation tests, was also performed. Furthermore, differential scanning calorimetry was also used, and the decomposition of the AFRP composites, aramid fibers, and pure postcured epoxy, in two different atmospheres, namely, air atmosphere and nitrogen (N2) atmosphere, was explored by the thermogravimetric analysis (TGA). From this point of view, the aramid fibers showed remarkably thermal resistance, in N2 atmosphere, and the volume fraction of fibers (Φf) was calculated to be Φf = 51%. In the TGA experiments, the postcured AFRP composites showed very good thermal resistance, both in air and N2 atmosphere, and this characteristic in conjunction with their relatively high T g, which is in the range of 85–95°C, depending on the frequency and the determination method, classifies these composites as potential materials in applications where the resistance in high temperatures is a required characteristic.


2021 ◽  
pp. 089270572110625
Author(s):  
Ajay Jayswal ◽  
Sabit Adanur

Polylactic acid (PLA) and thermoplastic polyurethane (TPU) were mixed in different proportions and extruded through twin-screw and single-screw extruders to obtain composite filaments to be used for 3D printing with fused deposition modeling (FDM) method. The properties of the filaments were characterized using uniaxial tensile tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), rheology, polarized optical microscope (POM), and scanning electron microscope (SEM). 3D printed samples from composite filaments were tested using dynamic mechanical analysis (DMA). It was found that the tensile strength and modulus of the filaments decrease while elongation at break increases with the increasing TPU content in the composite. The analysis also showed a partial miscibility of the polymer constituents in the solution of composite filaments. Finally, a flexible structure, plain weave fabric, was designed and 3D printed using the composite filaments developed which proved that the filaments are well suited for 3D printing.


2018 ◽  
Vol 19 (7) ◽  
pp. 2032 ◽  
Author(s):  
Dongmei Han ◽  
Guiji Chen ◽  
Min Xiao ◽  
Shuanjin Wang ◽  
Shou Chen ◽  
...  

The blends of Poly(propylene carbonate) (PPC) and polyester-based thermoplastic polyurethane (TPU) were melt compounded in an internal mixer. The compatibility, thermal behaviors, mechanical properties and toughening mechanism of the blends were investigated using Fourier transform infrared spectra (FTIR), tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical analysis technologies. FTIR and SEM examination reveal strong interfacial adhesion between PPC matrix and suspended TPU particles. Dynamic mechanical analyzer (DMA) characterize the glass transition temperature, secondary motion and low temperature properties. By the incorporation of TPU, the thermal stabilities are greatly enhanced and the mechanical properties are obviously improved for the PPC/TPU blends. Moreover, PPC/TPU blends exhibit a brittle-ductile transition with the addition of 20 wt % TPU. It is considered that the enhanced toughness results in the shear yielding occurred in both PPC matrix and TPU particles of the blends.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1011 ◽  
Author(s):  
Jing-Yu Liang ◽  
Se-Ra Shin ◽  
Soo-Hyoung Lee ◽  
Dai-Soo Lee

The possibility of exchange reactions and thermal self-healing in blends of thermoplastic polyurethane (TPU) and phenoxy resin was investigated herein. The analyses were based on characterization obtained via differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), and tensile test. A new phenoxy resin was synthesized from eugenol, and blends with different types of TPU were prepared to investigate the exchange reaction, thermal self-healing, and mechanical properties. The influence of phenoxy resin content on the mechanical behavior and healing efficiency was studied. Improvement of storage modulus owing to the increase of phenoxy resin content was observed. Results suggest that the exchange reaction between phenoxy- and ester-type TPU occurred during thermal treatment. However, little exchange occurred between phenoxy resin and ether-type TPU. Specifically, only ester-type TPU exhibited a significant exchange reaction in the phenoxy resin blend. Furthermore, in the presence of a catalyst (e.g., zinc acetate), the exchange reaction readily occurred, and the healing efficiency improved by the addition of the catalyst and increase in the phenoxy content.


2020 ◽  
Vol 10 (05) ◽  
pp. 2050023
Author(s):  
Thulasinath Raman Venkatesan ◽  
Anna A. Gulyakova ◽  
Reimund Gerhard

Polyvinylidene fluoride (PVDF)-based copolymers with tetrafluoroethylene (P(VDF-TFE)), trifluoroethylene (P(VDF-TrFE)) or hexafluoropropylene (P(VDF-HFP)) are of strong interest due to the underlying fundamental mechanisms and the potential ferro-, pyro- and piezo-electrical applications. Their flexibility and their adaptability to various shapes are advantageous in comparison to inorganic ferroelectrics. Here, we study the influence of stretching temperature on the crystalline phases and the dielectric properties in P(VDF-TFE) films by means of Dielectric Relaxation Spectroscopy (DRS), Fourier-Transform InfraRed spectroscopy (FTIR), Wide-Angle X-ray Diffraction (WAXD), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). Especially, the effect of stretching and the influence of the temperature of stretching on the mid-temperature ([Formula: see text] transition are studied in detail. The results show that stretching has a similar effect as that on PVDF, and we observe an increase in the fraction of ferroelectric [Formula: see text]-phase with a simultaneous increment in both melting point ([Formula: see text] and crystallinity ([Formula: see text] of the copolymer. While an increase in the stretching temperature does not have a profound impact on the amount of ferroelectric phase, the stability of the ferroelectric phase seems to improve — as seen in the reduction of the Full Width at Half Maximum (FWHM) of the WAXD peaks in both parallel and perpendicular directions to the molecular chain axis. The observation is also supported by the reduction of dissipation losses with an increase in stretching temperature — as seen in DRS measurements. Finally, both stretching itself and the temperature of stretching affect the various molecular processes taking place in the temperature range of the [Formula: see text] transition.


Sign in / Sign up

Export Citation Format

Share Document