The Effect of Volume Fraction of β-SiC on the Microstructures and Bending Strengths of β-SiC/Cu Composites

2014 ◽  
Vol 1030-1032 ◽  
pp. 201-204
Author(s):  
Lin Shan ◽  
Ming Hu ◽  
Li Li Tang ◽  
Yun Long Zhang

In order to improve the interfacial wettability between Cu and β-SiC, electroless plating was employed to deposit a copper film on β-SiC particles. The β-SiC/Cu composites with different volume fraction ( from 30% to 60% ) were fabricated by hot-press sintering technique. The microstructures, bending strengths were investigated by SEM and a tensile machine. The results showed that the uniform and continuous Cu coating on the β-SiC particles can be obtained after electroless plating. With the increase of volume fraction of β-SiC particles, the bending strength decreased gradually. The fractographs revealed that the composites had mixed-fracture characteristics of cleavages and dimples.

2014 ◽  
Vol 1030-1032 ◽  
pp. 280-283
Author(s):  
Li Li Tang ◽  
Ming Hu ◽  
Lin Shan ◽  
Yun Long Zhang

Electroless plating technology was applied in order to improve the poor wettability between copper and SiC. β-SiC(w+p)/Cu composites were fabricated by hot-press sintering. The influences of SiC volume fraction on microstructure, relative density and wear propertity were researched in detail. It turned out that SiC particles and wiskers distributed in Cu matrix homogeneously. And with the increase of SiC volume fraction, the relative density and friction coefficient were reduced respectively, the wear-resistant improved greatly.


2014 ◽  
Vol 1030-1032 ◽  
pp. 103-107
Author(s):  
Li Li Tang ◽  
Ming Hu ◽  
Lin Shan ◽  
Yun Long Zhang

Electroless plating technology was applied in order to improve the poor wettability between the copper and SiC. SiCp/Cu composites were frbricated by hot-press sintering technique. The influences of SiC particles (Cu-coated and Cu-uncoated) and SiCp/Cu-5vol%n-SiC on microstructures, relative density, bending strength and coefficient of thermal expansion(CTE) were researched in detail. The results show that SiC particles distributed in Cu matrix uniformly. And a certain amount of SiC, the relative density and bending strength of SiCp/Cu(Cu-coated) composite were greater than SiCp/Cu(Cu-uncoated) composite, and the coefficient of thermal expansion was opposite, Between SiCp/Cu(Cu-coated) and SiCp/Cu-5vol% nanoscale SiC(n-SiC), the relative density and bending strength of SiCp/Cu(Cu-coated) were more than SiCp/Cu-5vol%n-SiC, and CTE was different.


2014 ◽  
Vol 602-603 ◽  
pp. 488-493 ◽  
Author(s):  
Bao Xin Zhu ◽  
Yu Jun Zhang ◽  
Hong Sheng Wang ◽  
Chong Hai Wang ◽  
Shuang Shuang Yue

SiC-TiB2/B4C composites were fabricated by hot-press sintering B4C with silicon powder and tetrabutyl titanate (precursor of TiO2) as sintering and reinforcement agents. The influence of additives on hot-press sintering densification, microstructure and properties of composites were studied. The results showed that TiB2 and SiC generated by chemical reaction between additives and B4C matrix reinforced the sintering activity of the mixed powders and accelerated significantly the hot-press sintering densification rate of B4C from 1200 °C to 1700 °C. According to the SEM observation, the second phase of TiB2 and SiC particles synthetized in situ sited along the grain boundaries of B4C, meanwhile, those SiC particles of nanoscale size embedded into the B4C grains, and thereby, intra/inter-type ceramics formed. The maximum relative density of 98.1% was obtained with 9wt.% TiO2. The typical valus of Vickers hardness, bending strength and fracture toughness can reach 26.7 GPa, 580 MPa and 5.0 MPam1/2, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2007 ◽  
Vol 546-549 ◽  
pp. 2179-2182 ◽  
Author(s):  
Ling Bai ◽  
Xing Yu Zhao ◽  
Chang Chun Ge

Sintering of the Self-Propagating High-Temperature Synthesis (SHS) of β-Si3N4 powder with 6.67 wt.% Y2O3 and 3.33 wt.% Al2O3 as sintering additives has been emphatically investigated using hot-press sintering process. The relative density of hot-pressed β-Si3N4 reached near to the full densification (99.43%) at 1700°C. The similar micrographs with self-reinforcing rod-like β-Si3N4 grains forming an interlocking structure were observed. The better mechanical properties of hot-pressed Si3N4, such as the hardness (16.73GPa), fracture toughness (5.72 MPa·m1/2) and bending strength (611.72MPa) values, were obtained at 1700°C. The results indicate that good sinter ability can be obtained with the cheaply SHS of silicon nitride powder for preparing silicon nitride materials, which will make the cost of silicon nitride materials lowered.


2016 ◽  
Vol 697 ◽  
pp. 207-210
Author(s):  
Lian Meng Zhang ◽  
Yao Liu ◽  
Cheng Cheng Zhang ◽  
Guo Qiang Luo ◽  
Huang Liu ◽  
...  

Abstract. A new ternary composite of W-SiCP/Cu(40vol%) was designed and prepared by low-temperature hot-press sintering. The micro-structural characterizations were evaluated by X-ray diffraction (XRD) and scanning electron microstructure (SEM), coefficient of thermal expansion is measured. When sintered at 950°C-100MPa-2h, the relative density of the W-SiCP/Cu composites as a function of W content all exceeded 97%. Due to the plastic deformation of Cu, higher densification W-SiCP/Cu(40vol%) composites can be achieved at a relatively low temperature. The composites are characterized by the relatively low coefficient of thermal expansion, bending strength and hardness. The values of thermal expansion indicate that thermal expansion can be precisely controlled by adding SiC particles.


2017 ◽  
Vol 726 ◽  
pp. 297-302
Author(s):  
Chang Chun Lv ◽  
Yu Jia Zhai ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

TiCN-based cermets were prepared by hot-press sintering through adding various amounts of AlN nanopowder (0-20 wt.%) into a 64 wt.% TiC0.5N0.5-10 wt.% WC-8.5 wt.% Mo-12.5 wt.% Ni-5 wt.% Co system. The microstructure and mechanical properties of the prepared cermets were investigated. For the prepared cermets, samples with 5 wt.% AlN nanopowder exhibited optimum mechanical properties of Vickers hardness 2191 HV10, bending strength 601 MPa, and fracture toughness 6.03 MPa.m1/2, respectively.


2007 ◽  
Vol 561-565 ◽  
pp. 543-546 ◽  
Author(s):  
Qing Huang ◽  
Yong Huang ◽  
Chang An Wang ◽  
Hou Xing Zhang

In this paper, the MgAlON ceramic was fabricated by Spark Plasma Sintering (SPS) and hot press sintering respectively. The results showed that highly pure and single-phase MgAlON could be fabricated at lower sintering temperature in a short period through SPS process, compared with the conventional Hot Press sintering (HP) process. The bending strength of MgAlON specimens prepared by SPS process was higher than 500MPa while bending strength of HP specimens was much lower. The open porosity was almost eliminated in SPS MgAlON specimens. Spark Plasma Sintered MgAlON had a single phase of MgAlON while Hot Press Sintered MgAlON had major MgAlON and minor AlN and Al2O3.


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 128
Author(s):  
I Putu Lokantara ◽  
Ngakan Putu Gede Suardana

Tujuan dari penelitian ini adalah untuk menentukan kekuatan tarik dan kekuatan bending biokomposit limbah plastik polypropylene berpenguat serat lidah mertua. Lidah mertua yang digunakan adalah lidah mertua yang pinggirannya daunnya kuning dengan usia yang seragam. Daun lidah mertua direndam dengan metode water retting selama 7 hari dan proses ekstraksi serat dilakukan secara manual. Polypropylene daur ulang yang digunakan berasal dari limbah plastik minuman gelas. Perlakuan kimia serat lidah mertua dengan konsentrasi 5% NaOH dan waktu perendaman 2 jam. Komposit dicetak dengan menggunakan press panas dengan suhu 200oC dan waktu penahanan 2 jam. Komposit dilakukan pengujian tarik dengan menggunakan ASTM D-570 dan uji bending dengan ASTM 790-03. Hasil uji tarik menunjukkan bahwa kekuatan tarik tertinggi pada fraksi volume 35% sebesar 71,606 MPa. Kekuatan tarik meningkat sebesar 28,9% dari fraksi volume 25% ke fraksi volume 35%.  Hasil uji bending menunjukkan bahwa kekuatan bending tertinggi pada fraksi volume 35% sebesar 74,55 MPa. Kekuatan bending meningkat sebesar 22,9% dari fraksi volume 25% ke fraksi volume 35%. Dengan pengamatan foto mikro SEM, ikatan adhesi antara serat dan matrik terjadi dengan baik pada fraksi volume 35%.      The purpose of this study was to determine the tensile strength and bending strength of lidah mertua fiber reinforced polypropylene. Lidah mertua is used whose leaf margins are yellow with a uniform age. Lidah mertua leaves were soaked by water retting method for 7 days. Fiber is extracted manually by hand. Recycled polypropylene used comes from glass beverage plastic waste. The chemical treatment of lidah mertua fibers 5% NaOH and a soaking time of 2 hours. Composites are molded using a hot press with a temperature of 200oC and a holding time of 2 hours. Composite tensile testing was carried out using ASTM D-570 and bending test with ASTM 790-03. Tensile test results showed that the highest tensile strength at 35% volume fraction was 71,606 MPa. Tensile strength increased by 28.9% from 25% volume fraction to 35% volume fraction. Bending test results showed that the highest bending strength at 35% volume fraction was 74.55 MPa. The bending strength increased by 22.9% from the 25% volume fraction to the 35% volume fraction. By observing SEM micro photographs, the bond between the fiber and the matrix occurs well at 35% volume fraction


Sign in / Sign up

Export Citation Format

Share Document