XRD and FTIR Studies of Natural Cellulose Isolated from Pineapple (Ananas comosus) Leaf Fibres

2015 ◽  
Vol 1087 ◽  
pp. 197-201 ◽  
Author(s):  
Nur Ain Ibrahim ◽  
Noriean Azraaie ◽  
Nurul Aimi Mohd Zainul Abidin ◽  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
...  

Cellulosic materials derived from pineapple leaves fibers (PALF) which are being wasted after fruit harvested. There are two methods to extract cellulose from PALF. First methods were using sodium hydroxide (NaOH) 2% for alkaline treatment and bleached by sodium hypochlorite (NaClO) and buffer. Second method, cellulose was extracted using peroxyacetic acid delignification and bleached the sample in acidified pH 3 hydrogen peroxide solution. From X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) data’s, it is proven that both samples of cellulose have shown cellulose I structure.

2016 ◽  
Vol 846 ◽  
pp. 434-439 ◽  
Author(s):  
Fauziah Abdul Aziz ◽  
Ariffin Ismail ◽  
Wan Yunus Wan Md Zin ◽  
Norazman Mohamad Nor ◽  
Risby Mohd Sohaimi ◽  
...  

Cellulose Micro/Nano fibers (CMNF) from various plants which is Resak (Vatica spp.) waste, Merbau (Intsia bijuga) waste, banana (Musa acuminata) pseudo-stem and pineapple (Ananas comosus) leaf fibers have been isolated and characterized. Isolation of microfibril cellulose from raw fibers was achieved using alkaline treatment and bleaching. The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Characterizations of treated and untreated samples were compared. The comparison between those treated and untreated samples giving different crystallite size, crystallinity, arrangement of CMNF and surface morphology from different plants. Hence, with these information different nanocomposite from CMNF can be constructed and manipulated for various application.


2015 ◽  
Vol 1087 ◽  
pp. 35-39 ◽  
Author(s):  
Nur Amira Mamat Razali ◽  
Noriean Azraaie ◽  
Nurul Aimi Mohd Zainul Abidin ◽  
Nur Ain Ibrahim ◽  
Fauziah Abdul Aziz ◽  
...  

Cellulosic material derived from Merbau (Intsia bijuga) was extracted at atmospheric pressure. In the initial stage the sample was delignified using peroxyacetic acid to remove the amorphous. In the second stage the samples were double bleached using hydrogen peroxide (H2O2) and sodium Hydroxide (NaOH). From the X-Ray Diffraction (XRD) data it is evident that both acid and alkali bleached celluloses have rich cellulose I structure. The results are supported by FTIR study in which all samples shown typical spectra of cellulose.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Valerii A. Barbash ◽  
Olha V. Yashchenko ◽  
Olesia A. Vasylieva

Miscanthus x giganteus stalks were used to make organosolvent pulp and nanocellulose. The organosolvent miscanthus pulp (OMP) was obtained through thermal treatment in the mixture of glacial acetic acid and hydrogen peroxide at the first stage and the alkaline treatment at the second stage. Hydrolysis of the never-dried OМP was carried out by a solution of sulfuric acid with concentrations of 43% and 50% and followed by ultrasound treatment. Structural changes and the crystallinity index of OMP and nanocellulose were studied by SEM and FTIR methods. X-ray diffraction analysis confirmed an increase in the crystallinity of OMP and nanocellulose as a result of thermochemical treatment. We show that nanocellulose has a density of up to 1.6 g/cm3, transparency up to 82%, and a crystallinity index of 76.5%. The AFM method showed that the particles of nanocellulose have a diameter in the range from 10 to 20 nm. A thermogravimetric analysis confirmed that nanocellulose films have a denser structure and lower mass loss in the temperature range of 320–440°C compared to OMP. The obtained nanocellulose films have high tensile strength up to 195 MPa. The nanocellulose obtained from OMP exhibits the improved properties for the preparation of new nanocomposite materials.


2011 ◽  
Vol 12 (11) ◽  
pp. 4121-4126 ◽  
Author(s):  
Alenka Kljun ◽  
Thomas A. S. Benians ◽  
Florence Goubet ◽  
Frank Meulewaeter ◽  
J. Paul Knox ◽  
...  

2010 ◽  
Vol 11 (5) ◽  
pp. 1281-1285 ◽  
Author(s):  
Wolfgang Gindl ◽  
Gerhard Emsenhuber ◽  
Johannes Plackner ◽  
Johannes Konnerth ◽  
Jozef Keckes

2014 ◽  
Vol 895 ◽  
pp. 147-150 ◽  
Author(s):  
Nur Ain Ibrahim ◽  
Noriean Azraaie ◽  
Nurul Aimi Mohd Zainul Abidin ◽  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
...  

The main component in natural fibre is cellulose (C6H10O5)n. Cellulose from agricultural by-product is abundant, low cost, eco-friendly, biodegradable, and renewable. This research work was prepared alpha cellulose from pineapple leaf fibre (PALF), which obtained from the leaves of pineapple plant, Ananas comosus belonged to the family Bromeliaceae. The treated and untreated samples were characterized using X-ray diffraction (XRD).


2018 ◽  
Vol 280 ◽  
pp. 340-345 ◽  
Author(s):  
Muhammad Hanif Sainorudin ◽  
Masita Mohammad ◽  
Nurul Huda Abd Kadir ◽  
Nur Athirah Abdullah ◽  
Zahira Yaakob

In this study, microcrystalline cellulose (MCC) was extracted from various types of local agricultural wastes. Four types of agricultural waste such as coconut coir, banana stem, sugarcane bagasse and pineapple leaves were collected, extracted and hydrolyzed into microcrystalline cellulose, using pre-treatment (alkaline and bleaching) and acid hydrolysis, respectively. The extracted MCC were analyzed and compared with those of commercially available MCC. The study of crystallinity behaviors of the obtained MCC was performed by X-Ray Diffraction (XRD) analysis. The XRD of MCC revealed that the crystallinity of pineapple leaves has the highest crystallinity index with 75% in value and closest compared to commercial MCC, 81.25%. The value of crystallinity index for banana stem is 74.55% followed by coconut coir, 72.73% and sugarcane bagasse, 66.50%. All of the MCC samples showed the similar pattern with the typical crystalline structure of cellulose I. The crystallite size of all MCC samples was calculated and found in the range of 4.04 – 5.14 nm. These extracted MCC that obtained from several agricultural wastes was supposed to have a high potential as value-added products in industrial applications.


A general survey of cell-wall structure in the red algae has been carried out using the methods of X -ray diffraction analysis and electron microscopy. The fifteen species all show a similar wall structure consisting of numerous lamellae each of which is made up of random micro-fibrils embedded in an amorphous matrix. The X -ray diagrams obtained from several species are complicated by the existence of crystalline floridean starch, but nevertheless reveal the absence of cellulose I.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yu Zhao ◽  
Guoxin Hu

This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2concentration or temperature or O2, on the SO2absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h). The highest SO2absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2g−1SHA-Na. The experimental results indicate that the inlet SO2concentration slightly influences the SO2absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components.


Sign in / Sign up

Export Citation Format

Share Document