Influence of Thermal Annealing on the Properties of Sol-Gel-Derived Al:ZnO Thin Films

2015 ◽  
Vol 1109 ◽  
pp. 186-190
Author(s):  
Mohd Firdaus Malek ◽  
Mohamad Hafiz Mamat ◽  
M.Z. Musa ◽  
M. Rusop

Aluminium doped zinc oxide (Al:ZnO) thin films were prepared by a sol-gel dip coating process. In particular, the case of change of thermal annealing temperature was studied. The characterisation of the films by various analytical methods shows a correlation between thermal annealing temperature and characteristic of the film. The influence of the thermal annealing temperature on the film growth can be clearly observed. At lower thermal annealing temperatures, granular structure dominates the films, while the films feature a bigger grain growth at higher annealing temperatures. All films exhibited an average transmittance of greater than 85% in the visible region, with absorption edges at ~380 nm.

2015 ◽  
Vol 1109 ◽  
pp. 181-185 ◽  
Author(s):  
Mohd Firdaus Malek ◽  
Mohamad Hafiz Mamat ◽  
M.Z. Musa ◽  
M. Rusop

Multilayered thin films of aluminum-doped ZnO (Al:ZnO) have been deposited by the sol-gel dip coating technique. Experimental results indicated that the thermal annealing temperature affected the crystallinity of the Al:ZnO films. X-ray diffraction (XRD) analysis showed that thin films were preferentially orientated along the c-axis plane. The preferred orientation along (0 0 2) plane becomes more pronounced as the thermal annealing being increased. The film thickness ranges between 180 and 690 nm. In our experiments, the most optimum condition of Al:ZnO annealing temperature was both 500 oC.


2008 ◽  
Vol 63 (7-8) ◽  
pp. 440-444 ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Mohammad Khaledi Sardashti

For effectively fabricating nanocrystalline ZnO thin films by the sol-gel method, the relationships between the temperature of the heat treatment and the quality of the ZnO thin films was observed. The decomposition of the sol was analyzed by TG-DTA. The orientation of the c-axis of the ZnO thin film was identified by XRD. The morphology was observed and estimated by SEM. The experimental results did show that the orientation of the c-axis is determined by the pre-heating and annealing temperatures, and that the grain size and roughness of the ZnO thin films are mainly influenced by the annealing temperature. A qualified ZnO thin film was prepared by using a sol-gel with a preheating temperature of 275 °C for 10 min and an annealing temperature of 550 °C for 60 min.


2019 ◽  
Vol 56 ◽  
pp. 152-157 ◽  
Author(s):  
Abdelouahab Noua ◽  
Hichem Farh ◽  
Rebai Guemini ◽  
Oussama Zaoui ◽  
Tarek Diab Ounis ◽  
...  

Nickel oxide (NiO) thin films were successfully deposited by sol-gel dip-coating method on glass substrates. The structural, morphological and optical properties in addition to the photocatalytic activity of the prepared films were investigated. The results show that the films have a polycrystalline NiO cubic structure with dense NiO grains and average optical transmittance in the visible region. The photocatalytic properties of the films were studied through the degradation of methylene blue and 89% of degradation was achieved for 4.5h of solar light irradiation exposure which indicates the capability of NiO photocatalytic activity.


2012 ◽  
Vol 512-515 ◽  
pp. 1736-1739
Author(s):  
Li Li Zhang ◽  
Guo Qiang Tan ◽  
Meng Cheng ◽  
Hui Jun Ren ◽  
Ao Xia

Fe(NO3)3•9H2O and Bi(NO3)3•5H2O were used as raw materials. BiFeO3 thin films were prepared by sol-gel method. The effects of annealing temperatures on the morphology and dielectric property of the thin films were studied. XRD results show that the multi-crystal thin films with pure phase are obtained when annealed at 500°C and 550°C. But annealing at 580°C will lead to the appearance of Bi2.46Fe5O12 phase.AFM images show that as the increase of annealing temperatures the surface toughness of the thin film is decreased, but the surface undulation of the thin films is decreased gradually. Within the frequency range of 1KHz~1MHz, the dielectric constant of BiFeO3 thin films is kept over 125 and it does not change very much from 500°C to 580°C. Annealed at 550°C, the BiFeO3 thin films with the lower loss are obtained. At 1MHz, the dielectric loss is 0.12.


2000 ◽  
Vol 14 (22n23) ◽  
pp. 801-808 ◽  
Author(s):  
M. RAJENDRAN ◽  
M. GHANASHYAM KRISHNA ◽  
A. K. BHATTACHARYA

A novel all-inorganic aqueous sol–gel process has been developed to fabricate LaFeO3 thin films by dip-coating. Stable, positively charged colloidal sol particles of hydrous lanthanum ferrite with an average particle size (Z av ) of 7 nm were prepared and coated onto quartz plates under controlled conditions. The sols have been characterized using photon correlation spectroscopy (PCS) for Z av and size distribution. The redispersible gel was characterized by thermogravimetric and differential thermal analysis (TG-DTA) and also by isothermal heating followed by X-ray diffraction to identify the reaction sequence to form LaFeO 3. The sol–gel films as deposited were X-ray amorphous on heating up to 500°C, partially crystalline at 600°C, fully crystalline and single phase at 650°C and above. These films were continuous, polycrystalline, single phase, had uniform thickness in the range between 180 to 1000 nm, depending on deposition conditions, and showed about 80% optical transmittance. The optical band gap varied from 2.7 to 3.3 eV as a function of the annealing temperature. The refractive index increased with increase in annealing temperature from 1.55 at 500°C to 1.86 at 800°C.


2019 ◽  
Vol 37 (1) ◽  
pp. 16-24
Author(s):  
Bengü Özuğur Uysal ◽  
Fatma Z. Tepehan

AbstractNanocomposite silica thin films made using the sol-gel method were studied. The nano-silica films were prepared using a mixture of tetraethyl orthosilicate (TEOS), deionized water, ethanol, and ammonia solution. To control the growth of the particles inside the film, the nanocomposite silica film was prepared using a mixture of the nano-silica sol and the silica sol. The change in the particle size with the heat treatment temperature ranging from 450 °C to 1100 °C was investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), NKD (refractive index-N, extinction coefficient-K, and thickness-D) and ultraviolet-visible (UV-Vis) spectrophotometry were used for characterization purposes. The XRD studies showed that the nano-silica thin films were amorphous at all annealing temperatures except for 1100 °C. The_-cristobalite crystal structure formed at the annealing temperature of 1100 °C. Optical parameters, such as refractive indices and extinction coefficients, were obtained using the NKD analyzer with respect to the annealing temperature of the films. The activation energy and enthalpy of the nanocomposite silica film were evaluated as 22.3 kJ/mol and 14.7 kJ/mol, respectively. The cut-off wavelength values were calculated by means of extrapolation of the absorbance spectra estimated using the UV-Vis spectroscopy measurements. A red shift in the absorption threshold of the nanocomposite silica films indicated that the size of the silica nanoparticles increased with an increase of the annealing temperatures from 450 °C to 900 °C, and this confirms the quantum confinement effect in the nanoparticles.


2011 ◽  
Vol 216 ◽  
pp. 518-522
Author(s):  
Ching Fang Tseng ◽  
Chun Hung Lai ◽  
Chih Wen Lee

Dielectric, Optical properties and microstructures of Mg(Zr0.05Ti0.95)O3 thin films prepared by sol-gel method on n-type Si(100) substrates at different annealing temperatures have been investigated. The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited Mg(Zr0.05Ti0.95)O3 peaks orientation perpendicular to the substrate surface and the grain size with the increase in the annealing temperature. A dielectric constant of 7.4 and an optical bandgap of 3.7 were obtained for the prepared films.


2011 ◽  
Vol 312-315 ◽  
pp. 1027-1031
Author(s):  
Mohd Noor Asiah ◽  
Mat Zain Basri ◽  
Mohamad Rusop

This paper investigated the electrical properties of nanostructured Titanium Dioxide (TiO2) thin films prepared by the sol-gel method at different annealing temperatures. The precursor used was Titanium (IV) butoxide at concentration of 0.4 M. The TiO2 thin films were deposited on the glass and silicon substrates by using the spin coating technique. The influence of annealing temperatures on the electrical, structural, surface morphology and optical properties of the films were characterized by I-V measurement, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and UV-Vis Spectroscopy, respectively. It was found that the electrical properties of TiO2¬ thin films were changed due to the changes of annealing temperatures. As the annealing temperatures rises, the resistivity of the film found to be decreased. The result also shows that films which does not applied annealing temperature called as deposited were found to be amorphous while the films with annealing temperature T = 350oC and above became crystalline structure. The anatase phase can be obtained at annealing temperatures from T = 350oC up to T = 500oC.


2013 ◽  
Vol 334-335 ◽  
pp. 290-293 ◽  
Author(s):  
N. Baydogan ◽  
T. Ozdurmusoglu ◽  
Huseyin Cimenoglu ◽  
A.B. Tugrul

Doped ZnO:Al thin films were deposited on glass substrates by the solgel dip technique. Optical parameters such as the refractive index and the extinction coefficient tend to change with increasing annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document