A Study of Isotherm and Kinetic Models of Methylene Blue and Methyl Orange Adsorption Using Indonesian Natural Zeolite and Agricultural Waste

2021 ◽  
Vol 1162 ◽  
pp. 93-100
Author(s):  
Tri Esti Purbaningtias ◽  
Bayu Wiyantoko ◽  
Puji Kurniawati ◽  
Didik Prasetyoko

This study discusses the development of Indonesian natural zeolite and agricultural waste i.e bagasse ash and rice husk ash as natural adsorbents. These materials were used as an adsorbent for methyl orange and methylene blue adsorption for isotherm and kinetic study. Adsorption kinetic models for methyl orange and methylene blue with all adsorbents were a pseudo-second-order except methyl orange adsorption with bagasse ash adsorbent (MA) that followed pseudo-first-order. Isotherm models for all adsorption experiments were Langmuir type except methyl orange adsorption using rice husk adsorbent (MS) that followed Freundlich type.

2014 ◽  
Vol 699 ◽  
pp. 221-226
Author(s):  
Nurul Hanim Razak ◽  
Md. Razali Ayob ◽  
M.A.M. Zainin ◽  
M.Z. Hilwa

Eggshells and rice husk, two types of notable agricultural waste were used as bioadsorbent to remove Methylene Blue dye (MBD) in aqueous solution. This study was to investigate the performance of these two bioadsorbents in removing MBD. The removal percentage, adsorption capacity, and porosity characterization were examined. The method applied was a physical filtration. UV-VIS Spectrophotometer was used to determine the efficiency of the bioadsorbents in MBD adsorption. The highest removal percentage at the most concentrated MBD were 51% and 98% for eggshells and rice husks respectively. Meanwhile the characterization of rice husks pore size and volume proves that higher adsorptivity towards dye compares to eggshells porosity. It was concluded that the eggshells and rice husks bioadsorbents was successful to treat industrial textile wastewater with rice husks as the most efficient bioadsorbent in removing MBD.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Joshua N. Edokpayi ◽  
Samson O. Alayande ◽  
Ahmed Adetoro ◽  
John O. Odiyo

In this study, the potential for pulverized raw macadamia nut shell (MNS) for the sequestration of methylene blue from aqueous media was assessed. The sorbent was characterized using scanning electron microscopy for surface morphology, functional group analysis was performed with a Fourier-transform infrared spectrometer (FT-IR), and Brunauer–Emmett–Teller (BET) isotherm was used for surface area elucidation. The effects of contact time, sorbent dosage, particle size, pH, and change in a solution matrix were studied. Equilibrium data were fitted using Temkin, Langmuir, and Freundlich adsorption isotherm models. The sorption kinetics was studied using the Lagergren pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The feasibility of the study was established from the thermodynamic studies. A surface area of 2.763 m2/g was obtained. The equilibrium and kinetics of sorption was best described by the Langmuir and the pseudo-second-order models, respectively. The sorption process was spontaneous (−ΔG0=28.72−31.77 kJ/mol) and endothermic in nature (ΔH0=17.45 kJ/mol). The positive value of ΔS0 (0.15 kJ/molK) implies increased randomness of the sorbate molecules at the surface of the sorbent. This study presents sustainable management of wastewater using MNS as a potential low-cost sorbent for dye decontamination from aqueous solution.


2019 ◽  
Vol 268 ◽  
pp. 04006
Author(s):  
Janssen Radley Peñaflor ◽  
Airic James Carillo ◽  
Samuel Elijah Estrada ◽  
Jhulimar Celedonio-Castro

Adsorption process both in post carbon dioxide capture and wastewater treatment has been receiving widespread attention over the past decades as a mitigating technology for climate change and water pollution, respectively. With this increasing interest in adsorption processes to address environmental concerns, development of an adsorbent with not just high adsorptive capacity but which is also low cost is of great interest among researchers. In this study, an agricultural waste which was already utilized as a boiler fuel in a paper industry was investigated for its potential as an adsorbent for both carbon dioxide capture and wastewater treatment. Specifically, the CO2 and methylene blue adsorption capacity of carbon residue from rice husk used as boiler fuel was determined and was compared with a biochar synthesized from rice husk. Furthermore, Scanning Electron Microscope (SEM) and Thermogravimetric analysis (TGA) were used for the characterization of the adsorbents. Results showed that the carbon residue can be a potential adsorbent for both applications with about 0.5 wt% CO2 adsorption and 100% removal of the methylene blue.


2008 ◽  
Vol 5 (4) ◽  
pp. 742-753 ◽  
Author(s):  
M. Sujatha ◽  
A. Geetha ◽  
P. Sivakumar ◽  
P. N. Palanisamy

An Experimental and theoretical study has been conducted on the adsorption of methylene blue dye using activated carbon prepared from babul seed by chemical activation with orthophosphoric acid. BET surface area of the activated carbon was determined as 1060 m2/g. Adsorption kinetics, equilibrium and thermodynamics were investigated as a function of initial dye concentration, temperature and pH. First order Lagergren, pseudo-second order and Elovich kinetic models were used to test the adsorption kinetics. Results were analyzed by the Langmuir, Freundlich and Temkin isotherm models. Based on regression coefficient, the equilibrium data found fitted well to the Langmuir equilibrium model than other models. The characteristics of the prepared activated carbon were found comparable to the commercial activated carbon. It is found that the babul seed activated carbon is very effective for the removal of colouring matter.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ankur Gupta ◽  
Chandrajit Balomajumder

Fe modified rice husk was prepared as a low cost biosorbent for the removal of Cr(VI) and phenol both singly and in combination from single and binary simulated synthetic waste water. Rice husk was modified by treating with FeSO4·7H2O. The results showed that impregnation of iron onto the surface of rice husk improved the adsorption capability of both Cr(VI) and phenol. The effects of process parameters for multicomponent system such as pH, adsorbent dose, and contact time onto the percentage removal of both Cr(VI) and phenol were investigated. The experimental data for the adsorption of both Cr(VI) and phenol onto the surface of Fe modified rice husk applied to various kinetic and adsorption isotherm models. Multicomponent isotherm models such as Nonmodified Langmuir, Modified Langmuir, Extended Langmuir, Extended Freundlich, Competitive Nonmodified Redlich Peterson, Competitive Modified Redlich Peterson were applied. The results show that Extended Freundlich model best described the experimental data for both Cr(VI) and phenol from binary solution. Pseudo second-order model agreed well with Cr(VI) while pseudo first-order model agreed well with phenol. Maximum adsorption capacity in synthetic binary solution of Cr(VI) and phenol was found to be 36.3817 mg g−1for Cr(VI) and 6.569 mg g−1for phenol, respectively.


Author(s):  
O.T. Ogunmodede ◽  
O.L. Adebayo ◽  
A.A. Ojo

Natural clay has been considered as a potential absorbent for removing pollutants from water and waste water. Nonetheless, the effective application of clay for water treatment is limited due to small surface area and presence of net negative surface charge, leading to it low adsorption capacity. The absorption capacity was boosted via intercalation of CaO derived from snail shell (SS). The methylene blue sorption potential, PZC, and the surface area of unmodified clay sample were substantially enhanced by the intercalation process. The process of sorption of MB from solution was analyzed using five different isotherm models (Langmuir, Freundlich, Temkin, Harkins-Jura, and Halsey isotherm equations). The value of the Langmuir monolayer sorption capacity qm (mg/g) increased from 50.12 to 88.71, PZC values increased from 4.50 to 7.40, and the surface area (m2/g) value increased from 27 m2/g to 123 m2/g after the intercalation process. The experimental data were fitted into two kinetic models: Lagergren pseudo-first order and the chemisorptions pseudo-second order. It was observed that chemisorptions pseudo-second order kinetic model described the sorption process with high coefficients of determination (r2) better than pseudo first other kinetic models. The modification caused no change in the clay surficial microstructure but increased the lattice spacing of the clay framework.


2021 ◽  
Author(s):  
Mohamed A. T. Hussein ◽  
Mohamed M Motawea ◽  
Mohamed M. Elsenety ◽  
Salah M. El-Bahy ◽  
Hassanien Gomaa

Abstract The exploitation and employment of agricultural waste in polluted water treatment is one of the most important cost-effective approaches. Therefore, a novel mesoporous spongy adsorbent/photocatalyst was successfully synthesized through the grafting of nickel and cobalt oxides nanocomposites with wheat straw-derived SiO2. Nickel and cobalt oxides were added to enhance the functionality of wheat straw-derived SiO2. This synthesis methodology presents a simplistic, cost-effective, and eco-approachable alternative to getting an adsorbent and photocatalyst for the adsorption and photocatalytic degradation of methylene blue (MB) pollutants from wastewater. The modified wheat straw-derived SiO2 (MWSS) was characterized via XRD, SEM, EDX, TGA, FTIR, and nitrogen adsorption. Molecular dynamics computational calculations were performed to comprehend the ability of methylene blue to adjust the WSDS surface. The experiments of adsorption and photodegradation trials were performed to optimize the pH, contact time, initial MB-concentration, and temperature parameters. Furthermore, kinetics and isotherm models were checked to explain the MB-removal mechanism using mesoporous spongy MWSS. The current work indicated that the mesoporous MWSS adsorbent/photocatalyst provided efficient adsorption capability (79%), significant photocatalytic performance (93%), and higher solidity during reusability as well. This study suggests an efficient composite that contributes to getting rid of the MB pollutants from wastewater.


2017 ◽  
Vol 23 (4) ◽  
pp. 447-456
Author(s):  
Rahim Shojaat ◽  
Afzal Karimi ◽  
Naghi Saadatjoo ◽  
Soheil Aber

In the present study, GOx/MnFe2O4/calcium alginate nano-composite was prepared by the trapping enzyme/nanoparticles in calcium alginate. The prepared absorbent was applied for decolorization of artificial dye wastewater of acid red 14 (AR14) by heterogeneous bio-Fenton system. Kinetic and isotherm studies were carried out. The decolorization of acid red 14 followed the Michaelis- Menten, pseudo-first order and pseudo-second order kinetic models. Good correlation coefficients were obtained by fitting the experimental data to Michaelis- Menten and pseudo-second order kinetic models. The adsorption isotherms were described by Langmuir, Freundlich and Temkin isotherms. Among the three isotherm models, the Freundlich model was fitted with the equilibrium data obtained from adsorption of AR14 onto MnFe2O4/calcium alginate; while Temkin isotherm gave the best correlation for adsorption on MnFe2O4 nanoparticles. The effect of various parameters such as initial pH of solution, initial dye concentration, and contact time on the adsorption of AR14 on MnFe2O4 and MnFe2O4/ /calcium alginate as well as dye enzymatic decomposition was studied. The decolorization of AR14 with initial concentration of 10 mg.L?1 by using GOx/ /MnFe2O4/calcium alginate was 60.17%.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tzan-Chain Lee ◽  
Shumao Wang ◽  
Zonggui Huang ◽  
Zhongxing Mo ◽  
Gangxing Wang ◽  
...  

The potentiality of tea stem for the adsorption of methylene blue (MB) from aqueous phase was investigated. A series of operating factors, including the initial MB concentration, contact time, pH of solution, dose of tea stem, and ionic strength of solution, were conducted to understand the effect of adsorption of MB onto tea stem. Adsorption isotherm, kinetic models, thermodynamic investigation, and regenerability of tea stem were systematically investigated in this study. The experiment results revealed that the removal efficiency decreased with MB concentration and the equilibrium time of adsorption at different initial MB concentrations was approximately at 60 min. The appropriate dose of tea stem powder was found to be 4 g/L. The pHzpc of tea stem was evaluated and was observed to be 6.0 ± 0.2. The removal efficiency increased with pH ranging from 3.0 to 5.0 and remained constantly at the pH range of 5.0–11.0. The pH affected the adsorption because of the repellent power between H+ and dye cation. The ionic strength was found to have a negligible effect on the adsorption. The Langmuir and Temkin isotherm models were found to be the best isotherm models to elucidate the adsorption mechanism between MB and tea stem powder. The maximum adsorption capacity of 103.09 mg/g derived from the Langmuir model was much close to the experimental result. From the kinetic analysis, the pseudo-second-order model was found to be the suitable model to describe the adsorption behavior. The calculated adsorption capacities at different temperatures derived from the pseudo-second-order model ranging from 68.91 to 69.8 mg/g were well close to the experimental data. The intraparticle diffusion of MB molecules into pore structures of tea stem powder is the rate-limiting step for the adsorption process in this study. Evaluation of thermodynamic parameters including changes in enthalpy, entropy, and Gibb’s free energy indicated the adsorption mechanism between MB and tea stem powder was a spontaneous and exothermic process. The regeneration/adsorption experiments indicated that the tea stem powder efficiently remained more than 97% after five cycles using NaOH as a desorbing agent and thus be used for many times. On the basis of experimental results obtained, it is concluded that the tea stem has a considerable potential as a low-cost sorbent for removing MB from the aqueous phase.


Sign in / Sign up

Export Citation Format

Share Document