Volume Fraction Effects of Silicon Carbide on the Wear Behavior of SiCp-Reinforced Magnesium Matrix Composites

2010 ◽  
Vol 152-153 ◽  
pp. 11-18 ◽  
Author(s):  
Song Jeng Huang ◽  
Yo Zhi Dai ◽  
Yeau Ren Jeng

This paper investigated the volume fraction effect of micro-sized SiC on the tribological behavior of SiCp reinforced AZ91D Mg-based metal-matrix composites (MMCs). The Mg MMCs were prepared by the melt-stirring technique for wear tests. The hardness and coefficient of friction of Mg MMCs increase as increasing volume fraction of SiC particle in MMCs. The SiCp/AZ91D MMCs exhibit superior wear resistance under lower and moderate sliding condition. However, the effects of the SiC particle reinforcements on wear resistance are not as conclusive under severe sliding condition (50N-1500 rpm for all vol.% of MMCs, 50N-1000rpm for 3 vol. % MMCs), since the matrix of MMCs were softened at elevated temperature under such severe condition. However, the incorporation of SiC particles could enhance the wear resistance of AZ91D matrix alloy for most of the sliding conditions.

2007 ◽  
Vol 546-549 ◽  
pp. 499-502
Author(s):  
X. Qiu ◽  
Xiao Jun Wang ◽  
Ming Yi Zheng ◽  
Kun Wu

The fabrication processing, mechanical properties and fracture characters of SiCp/AZ91 magnesium matrix composites fabricated by squeeze casting were investigated. The SiC particles with different diameters (5μm, 20μm and 50μm) were employed as the reinforcement in the composites, the volume fraction of them was 50% in all cases. Experimental results showed that when the size of SiC particle decreased, the tensile properties of the composite increased. The tensile properties of SiCp/AZ91 composite with small particles are controlled by the properties of matrix alloy and the strength of the interface between the matrix and reinforcements, but the composites reinforced by large particles are controlled by the fracture of the particles.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


Author(s):  
M. A. Salem ◽  
I. G. El-Batanony ◽  
M. Ghanem ◽  
Mohamed Ibrahim Abd ElAal

Different Al-SiC metal matrix composites (MMCs) with a different matrix, reinforcement sizes, and volume fractions were fabricated using ball milling (BM) and powder metallurgy (PM) techniques. Al and Al-SiC composites with different volume fractions were milled for 120 h. Then, the Al and Al-SiC composites were pressed under 125 MPa and finally sintered at 450 °C. Moreover, microsize and combination between micro and nano sizes Al-SiC samples were prepared by the same way. The effect of the Al matrix, SiC reinforcement sizes and the SiC volume fraction on the microstructure evolution, physical and mechanical properties of the produced composites was investigated. The BM and powder metallurgy techniques followed by sintering produce fully dense Al-SiC composite samples with different matrix and reinforcement sizes. The SiC particle size was observed to have a higher effect on the thermal conductivity, electrical resistivity, and microhardness of the produced composites than that of the SiC volume fraction. The decreasing of the Al and SiC particle sizes and increasing of the SiC volume fraction deteriorate the physical properties. On the other hand, the microhardness was enhanced with the decreasing of the Al, SiC particle sizes and the increasing of the SiC volume fraction.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ridvan Gecu ◽  
Ahmet Karaaslan

This study aims to investigate the effect of volume fraction of commercially pure titanium (CP-Ti) on microstructural, mechanical, and tribological features of A356 aluminum matrix composites. Vacuum-assisted melt infiltration casting was performed to produce composites with 50%, 65%, 75%, and 80% CP-Ti contents. CP-Ti sawdusts were assembled under mechanical pressure in order to attain porous one-piece CP-Ti preforms which were infiltrated by A356 melt at 730 °C under 10−5 Pa vacuum atmosphere. TiAl3 layer was formed at the interface between A356 and CP-Ti phases. Owing to increased diffusion time through decreased diffusion path length, both thickness and hardness of TiAl3 phase were increased with increasing CP-Ti ratio, whereas the best wear resistance was obtained at 65% CP-Ti ratio. The main reason for decrease in wear resistance of 75% and 80% CP-Ti reinforced composites was fragmentation of TiAl3 layer during wear process due to its excessively increased brittleness. Strongly bonded TiAl3 phase at the interface provided better wear resistance, while weakly bonded ones caused to multiply wear rate.


2011 ◽  
Vol 311-313 ◽  
pp. 88-91
Author(s):  
Zhi Tai Wang ◽  
Zhi Feng Xu ◽  
Wen Na Liu ◽  
Wen Jie Li

Magnesium matrix composites reinforced by SiC particles of different size have been fabricated by vacuum pressure infiltration to investigate the influence of volume fraction and particle size on wear properties. It was found that the wear resistance of SiCp/Mg composites increased as volume fraction of particles with the same average diameter and reduced with the decrease of average diameter of particle, whereas the grooves furrow and adhesion increase. The influence of particle diameters on wear resistance was more prominent than that of volume fraction. The wear mechanism of composite and matrix alloy were oxidation, adhesive and delamination wear.


2005 ◽  
Vol 488-489 ◽  
pp. 741-744 ◽  
Author(s):  
Ali Arslan Kaya ◽  
E.S. Kayali ◽  
Dan Eliezer ◽  
G. Gertsberg ◽  
N. Moscovitch

The dry sliding wear behavior of magnesium-matrix-composites (MMC) reinforced by boron carbide particulates (B4Cp) has been investigated. Magnesium is the lightest structural material and is a good choice as a metal matrix for boron carbide and silicon carbide addition. Magnesium and its alloys, without reinforcement, are generally not suitable for mechanical applications due to their low wear resistance. The MMCs used in this study were produced via highpressure die-casting technique. The wear resistance of B4C/AZ91D composite reinforced with 12 and 25 wt% B4C were studied, compared with unreinforced diecast AZ91D. As-cast microstructures of the materials and boron carbide particules were characterized by using Scanning Electron Microscopy (SEM). The hardness values of the control sample and the composites were determined via Vickers hardness measurements. Pin on disk dry sliding wear tests were carried out to study wear rate and wear mechanisms. The magnesium matrix composites were used as pins while mild steel as disc material. The worn surfaces of pins were examined by using SEM. The wear performance of magnesium matrix composites was improved with increasing volume fraction of B4C up to a certain level.


Author(s):  
Jayakumar Lakshmipathy ◽  
Balamurugan Kulendran

AbstractThe wear behavior of Al/SiC composites prepared by stir casting technique is investigated to find out the effects of the weight percentage of SiC, load, and the number of strokes on a shaper machine. Metal matrix composite (MMC) pins are prepared with different weight percentages of SiC (10%, 15%, and 20%). The tests are carried out with different load conditions (25, 50 and 75 N) and different number of strokes (420,780 and 1605 strokes). Wear surfaces of tested samples are examined in scanning electron microscope (SEM). Hardness and impact tests are also carried out on the MMC samples. The experimental results show that the hardness of composites increases with an increase in SiC particle, and the impact strength decreases with increase in SiC content. The volume loss of MMC specimens are less than that of the matrix alloy. Moreover, the temperature rise near the contact surface of the MMC specimens increases with increase in wt% of SiC, load, and number of strokes. The coefficient of friction decreases with increase in load and the number of strokes.


1994 ◽  
Vol 350 ◽  
Author(s):  
D. E. Alman ◽  
J. A. Hawk ◽  
A. V. Petty

AbstractThe U.S. Bureau of Mines is examining the wear behavior of a variety of advanced materials, including the intermetallic compound MoSi2. The high stiffness and hardness of MoSi2 make it attractive for use in applications requiring wear resistance. This research reports on the results of pin abrasion wear tests for a variety of powder processed MoSi2 and MoSi2 matrix composites. The effect of the addition of ductile (Nb) and brittle (SiC) reinforcements, as well as the influence of reinforcement type and orientation geometry, on abrasive wear is discussed. Comparisons of the wear behavior of MoSi2 and MoSi2-based composites with other materials, such as refractory metals, aluminides, and ceramics, are made.


2007 ◽  
Vol 561-565 ◽  
pp. 945-948 ◽  
Author(s):  
Hong Yan ◽  
Ming Fu Fu ◽  
Fa Yun Zhang ◽  
Guo Xiang Chen

The microstructural structures of SiCp/AZ61magnesium matrix composite were studied in three different casting processes, and their hardness was measured. The results indicated that SiCp/AZ61 composites fabricated in stirring melt casting process, compared to those in fully liquid stirring casting process and in semi-solid stirring casting process, possessed fairly uniform distribution of SiC particulates and few porosity rate. It was an ideal metal matrix composites fabricated process. The Vickers hardness of non-reinforcement AZ61 magnesium alloy is higher than that of semi-solid billet, and the Vickers hardness of SiCp/AZ61 composite is obviously higher than that of the matrix. In the meantime, the Vickers hardness of SiCp/AZ61 composite can be continuously enhanced with an increasing of volume fraction of SiC particles.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1329 ◽  
Author(s):  
Bingxu Wang ◽  
Xue Han ◽  
Gary C. Barber ◽  
Yuming Pan

In this research, an austempering heat treatment was applied on gray cast iron using various austempering temperatures ranging from 232 °C to 371 °C and holding times ranging from 1 min to 120 min. The microstructure and hardness were examined using optical microscopy and a Rockwell hardness tester. Rotational ball-on-disk sliding wear tests were carried out to investigate the wear behavior of austempered gray cast iron samples and to compare with conventional quenched and tempered gray cast iron samples under equivalent hardness. For the austempered samples, it was found that acicular ferrite and carbon saturated austenite were formed in the matrix. The ferritic platelets became coarse when increasing the austempering temperature or extending the holding time. Hardness decreased due to a decreasing amount of martensite in the matrix. In wear tests, austempered gray cast iron samples showed slightly higher wear resistance than quenched and tempered samples under similar hardness while using the austempering temperatures of 232 °C, 260 °C, 288 °C, and 316 °C and distinctly better wear resistance while using the austempering temperatures of 343 °C and 371 °C. After analyzing the worn surface, abrasive wear and fatigue wear with the presence of pits, spalls, voids, long cracks, and wear debris were the main mechanisms for austempered gray cast iron with a low austempering temperature. However, only small pits and short cracks were observed on the wear track of austempered gray cast iron with high austempering temperature. Furthermore, the graphite flakes were exposed and ground by the counterpart surface during wear tests. Then, the graphite particles would form a tribo-layer to protect the contact surface.


Sign in / Sign up

Export Citation Format

Share Document