Loading Capacity of Simply Supported Steel-Concrete Composite Slim Beams

2010 ◽  
Vol 163-167 ◽  
pp. 2185-2193
Author(s):  
Lu Yang ◽  
Yuan Qing Wang ◽  
Yong Jiu Shi

A steel-concrete composite slim beam, with its steel section encased in a concrete slab, provides a composite steel-concrete floor construction with minimum depth and high fire resistance. It has become popular in multi-storey steel buildings throughout Europe in recent years and also been used in some projects in China. For the structural engineer, it is critical to understand the behavior of composite slim beam in the sagging moment region. In this paper, the bending capacity and flexural stiffness of the composite slim beams in sagging moment region are investigated theoretically. Meanwhile, the stiffness and bending capacity are given by Finite Element Analysis (FEA). The experiment of a simply supported beam has been carried out in order to validate the theoretical results.

2020 ◽  
Vol 4 (2) ◽  
pp. 138-146
Author(s):  
Richard Frans

The main advantage of castellated beam is the increasing of bending capacity caused by the increasing of inertia moment of steel section due to the increasing of depth of the steel section. In addition, some people argue that the opening section of castellated beam become an additional advantage in terms of aesthetics view. In general, there are three opening variations that are very often used in construction, which are hexagonal opening, circular opening, and diamond opening. Many researches have been done to compare the performance of castellated beam with various opening but only focusing on the behavior of castellated beam subjected to monotonic loading. Therefore, in this research, a review of the behavior of castellated beam with various opening subjected to quasi-static cyclic loading was carried out in order to find out which is better performance from the opening variations. A finite element analysis was conducted to find out the behavior of castellated beam with three variations of opening. A simple beam subjected to quasi-static loading using displacement control technique was considered in this research. The result shows that the castellated beam with diamond opening has a better performance compared to the other openings (hexagonal opening and circular opening).


2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Hytham Elwardany ◽  
Robert Jankowski ◽  
Ayman Seleemah

AbstractSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and nonlinear fluid viscous dampers to mitigate the mutual pounding between a series of structures is investigated. Nonlinear finite-element analysis of a series of adjacent steel buildings equipped with damping devices was conducted. Contact surfaces with both contactor and target were used to model the mutual pounding. The results indicate that the use of linear or nonlinear dampers leads to the significant reduction in the response of adjacent buildings in series. Moreover, the substantial improvement of the performance of buildings has been observed for almost all stories. From the design point of view, it is concluded that dampers implemented in adjacent buildings should be designed to resist maximum force of 6.20 or 1.90 times the design independent force in the case of using linear or nonlinear fluid viscous dampers, respectively. Also, designers should pay attention to the design of the structural elements surrounding dampers, because considerable forces due to pounding may occur in the dampers at the maximum displaced position of the structure.


2016 ◽  
Vol 861 ◽  
pp. 88-95
Author(s):  
Balázs Nagy ◽  
Elek Tóth

In this research, conjugated thermal and fluid dynamics simulations are presented on a modern hollow clay slab blocks filled pre-stressed reinforced concrete beam slab construction. The simulation parameters were set from Eurocode standards and calibrated using data from standardized fire tests of the same slab construction. We evaluated the temperature distributions of the slabs under transient conditions against standard fire load. Knowing the temperature distribution against time at certain points of the structure, the loss of load bearing capacity of the structure is definable at elevated temperatures. The results demonstrated that we could pre-establish the thermal behavior of complex composite structures exposed to fire using thermal and CFD simulation tools. Our results and method of fire resistance tests can contribute to fire safety planning of buildings.


2013 ◽  
Vol 351-352 ◽  
pp. 782-785
Author(s):  
Yong Bing Liu ◽  
Xiao Zhong Zhang

Established the mechanical model of simply supported deep beam, calculation and analysis of simple supported deep beams by using finite element analysis software ANSYS, simulated the force characteristics and work performance of the deep beam. Provides the reference for the design and construction of deep beams.


2014 ◽  
Vol 601 ◽  
pp. 231-234
Author(s):  
Cristian Lucian Ghindea ◽  
Dan Cretu ◽  
Monica Popescu ◽  
Radu Cruciat ◽  
Elena Tulei

As a general trend, in order to reduce material consumption or to reduce the mass of the structures, composite floor slabs solutions are used to achieve large spans floor slabs. This solutions led to floors sensitive to vibrations induced generally by human activities. As a verification of the design concepts of the composite floors, usually, it is recommended a further examination of the floor after completion by experimental tests. Although the experimental values of the dynamic response of the floor are uniquely determined, the processing can take two directions of evaluation. The first direction consist in determining the dynamic characteristics of the floor and their comparison with the design values. Another way that can be followed in the processing of the experimental results is to consider the human perception and comfort to the vibration on floors. The paper aims to present a case study on a composite floor, with steel beams and concrete slab, tested on-site. Both aspects of data processing are analyzed, in terms of the structural element, and in terms of the effect on human perception and comfort. Experimentally obtained values for the dynamic characteristics of the floor are compared with numerical values from finite element analysis, while the second type of characteristic values are compared with various human comfort threshold values found in international standards.


2018 ◽  
Vol 763 ◽  
pp. 259-269
Author(s):  
George Webb ◽  
Kanyakon Kosinanonth ◽  
Tushar Chaudhari ◽  
Saeid Alizadeh ◽  
Gregory A. MacRae

Beam column joint subassemblies in steel moment frames often have simply-supported gravity beams framing into the joint in the perpendicular direction. When these subassemblies undergo lateral displacement, moments enter the column from the beams. Some of these moments are directly applied from the in-plane beam and slab stresses as they contact the column, and additional moments occur as the slab causes the perpendicular simply supported beams to twist. In most design codes around the world, no explicit consideration of these moments is performed even though they may increase the likelihood of column yielding and a soft-storey mechanism. This paper quantifies the magnitude of these perpendicular beam twisting moments in typical subassemblies using inelastic finite element analysis. It is shown that for beam-column-joint-slab subassemblies where the primary and secondary beams are fully welded to the column, the addition of slab effects significantly increases the total stiffness and strength of the composite frame structure. In addition to this, it is also shown the twisting moment demand of the secondary beams increased the frames strength by approximately 2% for an imposed drift of 5% for the subassembly investigated when no gap was provided between slab and the column. It was also shown the twisting moment demand of the secondary beams increased the frames strength by approximately 10% for a maximum imposed drift of 5% for the subassembly investigated when a gap was provided between the slab and the column.


2011 ◽  
Vol 94-96 ◽  
pp. 902-908 ◽  
Author(s):  
Zheng Xin Zhang ◽  
Fang Lin Huang ◽  
Yan Bin Wu

This paper presents a method to simulate the mechanical behavior of magnetorheological fluid (MRF) subjected to magnetic field in the pre-yield region in ANSYS. The main idea is to devide an MRF element into two coincident elements, one of them has density and viscosity without shear modulus while another has shear modulus without density and viscosity. Taking a simply supported MRF sandwich beam as an example, good results and reasonable conclusion are obtained by comparing the results with the theoretical analysis and experimental study of Ref.[1]. The validity of finite element analysis is also investigated in this paper. At present, there is no exactly appropriate element type in ANSYS to model MRF, this kind of method called coincident elements method (CEM) will provide a new way to model the structures with MRF or MR dampers in ANSYS, and it also has reference roles for the future development of related elements in ANSYS.


Author(s):  
Shakti P. Jena ◽  
Dayal R. Parhi ◽  
B. Subbaratnam

In the present article, the responses of a double cracked simply supported beam have been investigated. The responses of the structure are determined using Duhamel integral method numerically and validated with finite element analysis (FEA) using ANSYS WORKBENCH 2015 along with experimental verifications. The mass is moving on the structure in terms of critical speed of the structure. The normalized deflections of the structure at different damaged configurations are calculated. The influences of speed, mass, crack depth and crack location on the structures response are investigated. It is observed that the results obtained from Duhamel integral converge well with FEA and experimental verifications.


Sign in / Sign up

Export Citation Format

Share Document