Development of Low-Cost LX70A Rod for Steel Cord

2011 ◽  
Vol 239-242 ◽  
pp. 2474-2478 ◽  
Author(s):  
Shu Wei Cao ◽  
Yong Lin Kang ◽  
Xin Jiang Wang ◽  
Qi Hang Han

Steel cord has the higher technical requirement in the production of wire rod. And the higher requirement of the structure uniformity brings about the more difficulty for producing wire rod. Therefore, the procedure of rod for steel cord has been studied at Anyang Iron & Steel Group Co., Ltd. It has been investigated the low-cost production process, inclusion control, composition segregation, chemical composition control, structure performance control and application of LX70A rod for steel cord. The present research has significant value for the application of similar products.

2021 ◽  
Author(s):  
Maria C. Iglesias ◽  
Philip S. McMichael ◽  
Osei A. Asafu-Adjaye ◽  
Brian K. Via ◽  
Maria S. Peresin

Abstract Wood-based panels are commonly used as building materials for interior and exterior purposes. Their production and utilization have increased over the past decades due to the useful properties they present. Adhesive-bonded products make up to 80% of the wood alternatives on the global market, and of that, urea-formaldehyde (UF) makes up approximately 81% of the resins used. Formaldehyde-based resins are used due to their effectiveness and low cost, as well as their ease of application and lack of color. Nevertheless, their main disadvantages are the lack of tackiness and the emission of formaldehyde over time. To improve UF performance, the utilization of microfibrillated cellulose, has been demonstrated to be effective. However, more understanding on the mechanisms of the interactions is of relevant importance. In this work, we studied interfacial interactions between UF with bleached (BCNF) and unbleached (LCNF) cellulose nanofibrils using Quartz Crystal Microbalance with dissipation monitoring (QCM-D) technique observing the superior performance of lignin-containing CNF. Additionally, the surface free energies were investigated using Contact Angle Measurements (CA) showing a decrease of the values mainly when utilizing LCNF, which was later correlated with the wettability properties of the particle boards (PBs). PBs with different adhesive/CNF formulations were produced showing larger improvements when adding LCNF in terms of modulus of elasticity (MOE), modulus of rupture (MOR), and internal bonding (IB). To gain a better understanding on the interactions between CNF and UF, CNF was fully characterized in terms of morphology, chemical composition, charge density, as well as thermal and colloidal stability.


2016 ◽  
Vol 7 (2) ◽  
pp. 42
Author(s):  
Aparecida De Fátima Oliveira Silva ◽  
Leila Maria Girondi ◽  
Suellen Jensen Klososki ◽  
Tatiana Colombo Pimentel ◽  
Carlos Eduardo Barão

Cassava bagasse, regarded as an agricultural residue can be used as raw material in the development of new products. Cereal bars are foods that have increasingly gained consumers because of the practical use. The objective of this study was to evaluate the effect of adding cassava bagasse (0, 8 and 25%) on the chemical composition and sensory acceptance of coconut cereal bars with Brazil nuts. Cereal bars with cassava bagasse had higher moisture, protein and carbohydrates (fiber) contents than cereal bars without bagasse, lower ash contents and similar fat content. The addition of cassava bagasse caused a decrease in the acceptance of the cereal bars only in the concentration of 25%, however, the products had hedonic values greater than 7 in a 9-point hedonic scale and acceptability indices higher than 80%, indicating that consumers moderately liked them. It can be concluded that the use of up to 25% cassava bagasse in the cereal bar formulation yields products with improved nutritional value and appropriated consumer acceptance. The addition of cassava bagasse to food products is a good alternative in the use of this byproduct, due to the sensory characteristics of the obtained products and the reduction of production costs, because the cassava bagasse has low cost and increases the production yield.


2018 ◽  
Vol 879 ◽  
pp. 201-205 ◽  
Author(s):  
Nisakorn Nuamsrinuan ◽  
Weeranuch Kaewwiset ◽  
Pichet Limsuwan ◽  
Kittisakchai Naemchanthara

The aim of this work was to develop technical analysis of wavelength dispersion X-ray fluorescence (WDXRF) and compare with technical neutron activation analysis (NAA). First, the standard of tin oxide (SnO) was ground into powder and mixed with boric acid (H3BO3) as binder at different weight. All of samples were investigated by WDXRF in normalize mode.The results indicated that the range can use to calibration at sample weight 0.2, 0.3 and 0.4 g. Next, the three SnO samples from different area (A, B and C) were ground, mixed with binder at ratio 0.2, 0.3 and 0.4 g and investigated by WDXRF in normalize mode. The results show tin (Sn) content of sample area A, B and C were 75.71, 74.61 and 71.01%, respectively. The result from NAA technique show Sn content of sample A, B and C were 79.36, 77.48 and 73.35%. The percentage error of WDXRF and NAA technique of the samples from the different area had 4.63, 3.70 and 3.19%. From the experiment as examined that the WDXRF technique could be improve process for determine chemical composition which one of choice for easy to used and low cost.


2018 ◽  
Vol 69 (4) ◽  
pp. 406
Author(s):  
Alexandre M. Dias ◽  
Luís C. V. Ítavo ◽  
Júlio C. Damasceno ◽  
Camila C. B. F. Ítavo ◽  
Geraldo T. Santos ◽  
...  

Sugarcane is a source of roughage in animal feeding. It presents high production per unit of cultivated area, relatively easy cultivation and low cost of production per hectare, and better quality and a high dry matter (DM) yield in periods when forage is scarce. This study aimed to evaluate the effect of increasing levels of calcium hydroxide (Ca(OH)2) in sugarcane forage on chemical composition, in vitro digestibility values of DM, neutral detergent fibre (NDF) and acid detergent fibre (ADF), and kinetics of thermal decomposition processes of weight loss and heat flow. Sugarcane was collected close to the ground and 50-kg heaps of the fresh material were formed and mixed with four doses of Ca(OH)2 (0, 8, 16 and 24 g kg–1 sugarcane). Concentrations of NDF and ADF decreased linearly with increasing amount of Ca(OH)2, whereas concentration of hemicellulose increased linearly. In vitro digestibilities of DM, NDF and ADF were enhanced in a quadratic manner with increasing amounts of Ca(OH)2. The release of heat, measured by ΔH, increased linearly with increased Ca(OH)2 levels, likely due to enhanced digestibility of the fibre components. Weight loss decreased linearly between 272.2°C and 397.7°C with increased amounts of Ca(OH)2 added to sugarcane, likely due to changes in cellulose structure, which became denser and thermodynamically more stable than native cellulose following the alkaline treatment. Calcium hydroxide changed chemical composition and digestibility of the fibrous fraction of sugarcane, resulting in better nutritional value. The greatest release of heat and highest in vitro digestibility of fibre were observed when adding 15.2 g Ca(OH)2 kg–1 sugarcane; therefore, this dose is recommended to enhance the nutritive value of sugarcane as ruminant feed.


2005 ◽  
Vol 482 ◽  
pp. 267-270
Author(s):  
Petr Lukáš ◽  
Ludvík Kunz ◽  
Milan Svoboda ◽  
J. Čadek

Creep behaviour of two types of superalloy single crystals of the orientation <001> was studied at 850 °C in air to assess their relative suitability for turbine blade applications: CMSX-4 and its potential low cost alternative, CM186LC. The chemical composition of these two superalloys is similar, their microstructure, especially g/g’ distribution, differs substantially. At the same applied stress, the time to failure of CM186LC is shorter than that of CMSX-4. Simultaneously, the creep rate of CM186LC is higher than that of CMSX-4 for the whole lifetime. This is attributed to easier activation of dislocation sources within large g’particles present in CM186LC crystals.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Malek Jalilian ◽  
Peyman Pourafshary ◽  
Behnam Sedaee Sola ◽  
Mosayyeb Kamari

Designing smart water (SW) by optimizing the chemical composition of injected brine is a promising low-cost technique that has been developed for both sandstone and carbonate reservoirs for several decades. In this study, the impact of SW flooding during tertiary oil recovery phase was investigated by core flooding analysis of pure limestone carbonate rocks. Increasing the sulfate ion concentration by using CaSO4 and MgSO4 of NaCl concentration and finally reducing the total salinity were the main manipulations performed to optimize SW. The main objective of this research is to compare active cations including Ca2+ and Mg2+ in the presence of sulfate ions (SO42−) with regard to their efficiency in the enhancement of oil production during SW flooding of carbonate cores. The results revealed a 14.5% increase in the recovery factor by CaSO4 proving its greater effectiveness compared to MgSO4, which led to an 11.5% production enhancement. It was also realized that low-salinity water flooding (LSWF) did not lead to a significant positive effect as it contributed less than 2% in the tertiary stage.


2018 ◽  
Vol 770 ◽  
pp. 248-254
Author(s):  
Leandro Bolzoni ◽  
Elisa Maria Ruiz-Navas ◽  
Elena Gordo

Cheap alloying elements and creative processing techniques are a way forward to open up more industrial opportunities for Ti in sectors where it is not extensively applied yet, rather than in aerospace and biomedical applications. This study focuses on understanding the joint effect of using a commercial steel powder to add Fe to pure Ti and its processing by press-and-sinter on the behaviour of low-cost PM Ti alloys. It is found that the calibrated addition of steel permits to develop new low-cost Fe-bearing Ti alloys that can satisfactorily be produced using the blending elemental PM approach. Densification of the samples and homogenization of the chemical composition are enhanced by the high diffusivity of Fe. The low-cost α+β alloys reach comparable physical and mechanical properties to those of wrought-equivalent PM Ti alloys, such as Ti-6Al-4V, and are therefore promising candidates for load-bearing lightweight products.


Sign in / Sign up

Export Citation Format

Share Document