Influencing Parameters Analysis of Chloride Threshold Value on Reinforcements Embedded in Concrete

2011 ◽  
Vol 250-253 ◽  
pp. 202-206 ◽  
Author(s):  
Wei Qun Cao ◽  
Xiao Mei Wan ◽  
Tie Jun Zhao

The chloride threshold to develop active corrosion of the reinforcing steel does not seem to be a unique value and it depends on several factors, such as concrete mix proportions, cement type, C3A content of cement, blended materials, water/cement ratio, temperature, relative humidity, steel surface conditions and source of chloride penetration among others. Numerous studies have been already devoted to the study of the chloride threshold value for depassivation of the steel embedded in concrete. One of the reasons found for the scatter is the large number of variables that influence the chloride amount for depassivation. The other reason is the lack of accordance for the definition of the chloride threshold itself, either on the determining parameters (visual observation, corrosion potential or corrosion current) or on the expression of the threshold (as[Cl-]/[OH-] ratio or by weight of cement or concrete). The present paper presents chloride thresholds expressed as total, free and [Cl-]/[OH-] ratio.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7595
Author(s):  
Abdulrahman M. Alhozaimy ◽  
Mshtaq Ahmed ◽  
Raja Rizwan Hussain ◽  
Abdulaziz Al-Negheimish

This paper investigates the effect of high ambient temperatures on the chloride threshold value for reinforced concrete (RC) structures. Two commonly available carbon steel rebars were investigated under four different exposure temperatures (20 °C (68 °F), 35 °C (95 °F), 50 °C (122 °F), and 65 °C (149 °C)) using environmental chambers at a constant relative humidity of 80%. For each temperature, six different levels of added chloride ions (0.00%, 0.15%, 0.30%, 0.60%, 0.90%, and 1.20% by weight of cement) were used to study the chloride threshold value. Corrosion initiation was detected by monitoring the corrosion potential and corrosion rate using electrochemical techniques. The water-soluble (free) and acid-soluble (total) chlorides were determined using potentiometric titration according to the relevant ASTM standards. The threshold chloride content for each exposure temperature was determined by analyzing the corrosion potential, corrosion rate, and chloride content of each specimen. The results showed that the chloride threshold values were significantly temperature-dependent. At temperatures of 20 °C (68 °F) and 35 °C (95 °F), the chloride threshold value (expressed as free chlorides) was approximately 0.95% by weight of cement. However, as the temperature increased to 50 °C (122 °F), the chloride threshold decreased significantly to approximately 0.70% by weight of cement. The reduction in the chloride threshold value became more dramatic at an exposure temperature of 65 °C (149 °F), decreasing to approximately 0.25% by weight of cement. The trends were similar for the rebars from the two sources, indicating that the rebar source had little influence on the chloride threshold value.


2020 ◽  
Vol 9 (1) ◽  
pp. 496-502 ◽  
Author(s):  
Zhaohui Zhang ◽  
Bailong Liu ◽  
Mei Wu ◽  
Longxin Sun

AbstractThe electrochemical behavior of gold dissolution in the Cu2+–NH3–S2O32−–EDTA solution has been investigated in detail by deriving and analyzing the Tafel polarization curve, as this method is currently widely implemented for the electrode corrosion analysis. The dissolution rate of gold in Cu2+–NH3–S2O32−–EDTA solution was determined based on the Tafel polarization curves, and the effects of various compound compositions in a Cu2+–NH3–S2O32−–EDTA mixture on the corrosion potential and corrosion current density were analyzed. The results showed that the corrosion potential and polarization resistance decreased, whereas the corrosion current density increased for certain concentrations of S2O32−–NH3–Cu2+ and EDTA, indicating that the dissolution rate of gold had changed. The reason for promoting the dissolution of gold is also discussed.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Wenzheng Chen ◽  
Wenlong Zhang ◽  
Dongyan Ding ◽  
Daihong Xiao

Microstructural optimization of Al-Li alloys plays a key role in the adjustment of mechanical properties as well as corrosion behavior. In this work, Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn alloy was homogenized at different temperatures and holding times, followed by aging treatment. The microstructure and composition of the homogenized alloys and aged alloys were investigated. There were Al7Cu4Li phase, Al3Li phase, and Al2CuLi phases in the homogenized alloys. The Al7Cu4Li phase was dissolved with an increase in homogenization temperature and holding time. Al2Cu phase and Al2CuLi phase coarsened during the homogenization process. The alloy homogenized at 515 °C for 20 h was subjected to a two-stage aging treatment. Peak-age alloy, which had gone through age treatment at 120 °C for 4 h and 180 °C for 6 h, was mainly composed of α-Al, Al20Cu2Mn3, Al2CuLi, Al2Cu, and Al3Li phases. Tafel polarization of the peak-age alloys revealed the corrosion potential and corrosion current density to be −779 mV and 2.979 μA/cm2, respectively. The over-age alloy had a more positive corrosion potential of −658 mV but presented a higher corrosion current of 6.929 μA/cm2.


2021 ◽  
Vol 882 ◽  
pp. 96-103
Author(s):  
A.D. Vishwanatha ◽  
D.M. Shivanna ◽  
Bijayani Panda

In-situ AlxNiy reinforced aluminium matrix composites (AMCs) were produced by stir-casting route by adding 5, 10 and 15 weight percentage (wt.%) of Ni to AA6061 aluminum alloy. The density, porosity, microstructure, hardness and corrosion behaviour of the as-cast AMCs was studied and compared with that of the as-cast AA6061 alloy. The porosity in all the castings was found to be less than 0.1%. Further, the porosity was found to decrease with increase in Ni addition. Optical microscopy studies showed that in-situ formed AlxNiy was distributed along the dendritic arms. The distribution became non-homogeneous and coarse with increase in AlxNiy content. The coarse distribution of AlxNiy in the AA6061 matrix also resulted in the decrease in hardness of the composite, after an initial increase in hardness till 10 wt.% Ni addition. The open circuit potential (OCP) and corrosion potential (Ecorr) of the AMCs with 5, 10 and 15 wt. of % Ni addition was noble than that of the AA6061 alloy. This was understood to be due to the presence of AlxNiy intermetallic which is known to have a noble corrosion potential than the aluminium alloy. However, the corrosion current (icorr) increased while the polarization resistance (Rp) decreased with increase in Ni addition in the AMC. This indicates that the coarse non-homogeneous distribution of in-situ AlxNiy had a detrimental effect on the corrosion performance of the AMCs.


2007 ◽  
Vol 991 ◽  
Author(s):  
Tae-Young Kwon ◽  
In-Kwon Kim ◽  
Jin-Goo Park

ABSTRACTThe purpose of this study was to characterize KOH based electrolytes and effects of additives on electro-chemical mechanical planarization. The electrochemical mechanical polisher was made to measure the potentiodynamic curve and removal rate of Cu. The potentiodynamic curves were measured in static and dynamic states in investigated electrolytes using a potentiostat. Cu disk of 2 inch was used as a working electrode and Pt electroplated platen was used as a counter electrode. KOH was used as the electrolyte. H2O2 and citric acid were used as additives for the ECMP of Cu. In static and dynamic potentiodynamic measurements, the corrosion potential decreased and corrosion current increased as a function of KOH concentration. In dynamic state, different potentiodynamic curve was obtained when compared to the static state. The current density did not decrease in passivation region by mechanical polishing effect. The static etch and removal rate were measured as function of KOH concentration and applied voltage. In ECMP system, polishing was performed at 30 rpm and 1 psi. The removal rate was about 60 nm/min at 0.3 V when 5 wt% KOH was used. Also, the effect of additive was investigated in KOH based electrolyte on removal rates. As a result, The removal rate was increased to 350 nm/min when 5wt% KOH, 5vol% H2O2, 0.3 M citric acid were used.


Author(s):  
Mukti Advani ◽  
Neelam J. Gupta ◽  
S. Velmurugan ◽  
Erramppalli Madhu ◽  
Satish Chandra

Under mixed-mode traffic conditions prevailing on Indian roads at unsignalized intersections, it is commonly observed that vehicles entering from minor streets indulge in forceful gap creation/delay for the vehicles moving on the major road. Although this driving behavior has been reported in some of the published studies for Indian traffic conditions, a clear definition of such forceful entries is not available. An attempt has been made in this study to define this forceful entry phenomenon on the basis of changes in the speed of major streets’ vehicles approaching the intersection on a typical case of mixed-traffic environs. In this regard, field observations were recorded through videography to obtain the speed reduction threshold value for categorizing an entry as a forceful entry. To quantify the above, data in relation to various vehicle types approaching intersections and their associated speeds at the reference area were extracted at the approach arms of the intersection. On the basis of observations, collected data were divided into three scenarios: ( 1 ) vehicles on major roads reduce their speed when vehicles are absent on minor roads; ( 2 ) vehicles on major roads reduce their speed when vehicles are waiting on minor roads; and ( 3 ) vehicles on major roads reduce their speed when vehicles from minor roads have accepted the gap/lag for movement. The changes in speed in all the three scenarios were compared to identify forceful entries with the base case of normal traffic flow on the major road without the existence of forceful entry phenomenon. The study revealed that the speed reduction to the extent of 73% is considered as a forceful entry at the selected location. Furthermore, the study estimated the effect of forceful behavior on critical gap at unsignalized intersections.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1775 ◽  
Author(s):  
Aneta Kania ◽  
Ryszard Nowosielski ◽  
Agnieszka Gawlas-Mucha ◽  
Rafał Babilas

Magnesium alloys with rare earth metals are very attractive materials for medical application because of satisfactory mechanical properties. Nevertheless, low corrosion resistance is an obstacle in the use of Mg alloys as resorbable orthopedic implants. The paper presents results of mechanical and corrosion properties of MgCa5-xZn1Gdx (x = 1, 2, and 3 wt. %) alloys. Based on the microscopic observations it was stated that the studied alloys show a dendritic microstructure with interdendritic solute rich regions. The phase analysis reveals an occurrence of α-Mg and Mg2Ca, Ca2Mg6Zn3 phases that are thermodynamic predictions, and stated Mg26Zn59Gd7 phases in MgCa5-xZn1Gdx (x = 1, 2, and 3 wt. %) alloys. The Mg26Zn59Gd7 phases are visible as lamellar precipitations along interdendritic regions. It was confirmed that an increase of Gd content from 1 to 3 wt. % improves ultimate tensile (Rm; from 74 to 89 MPa) and compressive strength (Rc; from 184 to 221 MPa). Moreover, the studied alloys are active in Ringer’s solution. They are characterized by an increase of corrosion potential (Ecorr) of about 150 mV in comparison with values of open circuit potential (EOCP). The best electrochemical parameters (e.g., corrosion current density, icorr, polarization resistance, Rp, and Ecorr) were obtained for the MgCa3Zn1Gd2 alloy.


Sign in / Sign up

Export Citation Format

Share Document