scholarly journals Evaluation of Mechanical Properties of a Superalloy Disk with a Dual Microstructure

2011 ◽  
Vol 278 ◽  
pp. 381-386 ◽  
Author(s):  
Yu Tao ◽  
Jian Tao Liu ◽  
Yi Wen Zhang

The main purpose of this paper is to evaluate the mechanical properties of a FGH96 alloy disk with a dual microstructure. FGH96 is a powder metallurgy (P/M) processed disk alloy, which was developed in the 1990s in China. The manufacturing processes used to produce the FGH96 disk with a dual grain structure consisted of atomization by plasma rotating electrode process (PREP), hot isostatic pressing (HIP), isothermal forge, special heat treatment for obtaining dual grain struc-ture and final heat treatment. The disk was cut up and completely evaluated. Mechanical properties, including tensile, stress rupture, plastic creep, low cycle fatigue, fatigue crack growth rate, fracture toughness, impact and hardness, were tested at room and higher temperatures. In addition, a detailed grain characterization of the disk, from rim to bore, was also presented.

2010 ◽  
Vol 638-642 ◽  
pp. 455-460 ◽  
Author(s):  
A. Rutecka ◽  
L. Dietrich ◽  
Zbigniew L. Kowalewski

The AlSi8Cu3 and AlSi7MgCu0.5 cast aluminium alloys of different composition and heat treatment were investigated to verify their applicability as cylinder heads in the car engines [1]. Creep tests under the step-increased stresses at different temperatures, and low cycle fatigue (LCF) tests for a range of strain amplitudes and temperatures were carried out. The results exhibit a significant influence of the heat treatment on the mechanical properties of the AlSi8Cu3 and AlSi7MgCu0.5. An interesting fact is that the properties strongly depend on the type of quenching. Lower creep resistance (higher strain rates) and lower stress response during fatigue tests were observed for the air quenched materials in comparison to those in the water quenched. Cyclic hardening/softening were also observed during the LCF tests due to the heat treatment applied. The mechanical properties determined during the tests can be used to identify new constitutive equations and to verify existing numerical models.


2018 ◽  
Vol 275 ◽  
pp. 81-88
Author(s):  
Monika Karoń ◽  
Marcin Adamiak

The purpose of this paper is to present the microstructure and mechanical behavior of 6060 aluminum alloy after intense plastic deformation. Equal Channel Angular Pressing (ECAP) was used as a method of severe plastic deformation. Before ECAP part of the samples were heat treated to remove internal stresses in the commercially available aluminium alloy. The evolution of microstructure and tensile strength were tested after 1, 3, 6 and 9 ECAP passes in annealed and non annealed states. It was found that intensely plastically deformed refined grains were present in the tested samples and exhibited increased mechanical properties. Differences were noted between samples without and after heat treatment


2020 ◽  
Vol 985 ◽  
pp. 97-108
Author(s):  
Mouhamadou Moustapha Sarr ◽  
Motohiro Yuasa ◽  
Hiroyuki Miyamoto

This study aims to investigate the effect of processing routes (A and Bc) and temperature on microstructure, texture and mechanical properties of pure magnesium was studied in this research. An extruded pure magnesium (~99,9 %) was subjected to severe plastic deformation (SPD) by ECAP. Deformation was conducted at 523K and 473K and two different processing routes (A and Bc) were used to control the texture. The microstructure and texture characterization of the pressed materials were carried out. It was found that the microstructure displayed a bimodal grain structure after two passes and then became homogeneous after four passes following both routes A and Bc. The misorientation distribution was examined and the results revealed that the fraction of high angle grain boundaries (HAGB) was higher at temperature 473K. The texture was randomized following route Bc whereas it became strengthened in route A after four passes. According to the Hall-Petch (HP) relationship, the yield stress of polycrystalline metals increases with a decrease in grain size. In this study, a positive slope k was achieved in the strengthened texture while a negative one was obtained in the softened texture. The ductility of ECAP processed material was considerably improved (from 23% to 38%) without sacrificing the yield stress by route Bc at 423K.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3805 ◽  
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Artur Oziębło ◽  
Krzysztof Perkowski ◽  
...  

In this study, we analyzed the mechanical properties of selectively laser melted (SLM) steel obtained via different modifications during and after the manufacturing process. The aim was to determine the effects of precipitation heat treatment on the mechanical properties of elements additively manufactured using three different process parameters. Some samples were additionally obtained using hot isostatic pressing (HIP), while some were treated using two different types of heat treatment and a combination of those two processes. From each manufactured sample, a part of the material was taken for structural analysis including residual stress analysis and microstructural investigations. In the second part of the research, the mechanical properties were studied to define the scleronomic hardness of the samples. Finally, tensile tests were conducted using a digital image correlation (DIC) test and fracture analysis. The treated samples were found to be significantly elongated, thus indicating the advantages of using precipitation heat treatment. Additionally, precipitation heat treatment was found to increase the porosity of samples, which was the opposite compared to HIP-treated samples.


2017 ◽  
Vol 898 ◽  
pp. 476-479
Author(s):  
Jin Xia Yang ◽  
Yuan Sun ◽  
Dong Ling Zhou

The effects of HIP process on microstructure and mechanical properties of IN792 cast superalloy were studied. The results showed that HIP process produced more uniform and finer cubic γ′ than standard heat treatment. The difference of the mechanical properties should be caused by the microstructure changes. HIP process leads the homogeneous distribution of γ′ at dendritic arm and interdendritic area, and improved UTS and YS of tested alloy at 550°C. However, it played no role in increasing UTS and YS at room temperature and stress-rupture lives of 760°C/662MPa and decreased stress-rupture lives of 982°C/186MPa.


2016 ◽  
Vol 849 ◽  
pp. 570-579
Author(s):  
Qiang Huang ◽  
Jin Xia Song ◽  
Qing Li ◽  
Wei Peng Ren ◽  
Xin Guang Guan ◽  
...  

The microstructures and mechanical properties of superalloy K465 under different heat treatment, including as as-cast, solution treatment and aging, were investigated. The results showed that γ' precipitates in as-cast condition exhibited two kinds of morphologies of fine regular cuboidal shape at dendritic arm and coarse irregular form in interdendritic region. MC carbides decomposed into M6C carbides partly after 1210°C/4h solution treatment. The high temperature stress-rupture life can be improved obviously with the increasing cooling rate. When cooling rate was lower than 70°C/min, the room temperature tensile elongation increased with cooling rate increasing. When cooling rate was higher than 90°C/min the room temperature tensile elongation decreased with cooling rate increasing. The proper cooling rate of 70oC/min~90oC/min is advantageous for the achievement of excellent comprehensive properties. When aging treatments continued the regularization of γ' resulted in the improvement of stress-rupture life and the reduction of tensile elongation. The mechanical property gap between the solution treatment and aging can be decreased with increasing cooling rate.


Author(s):  
P. Kordas

Purpose: Assessment of the possibilities of shaping the structure and improvement of mechanical properties of casting from AlMg10 alloy through a selection of casting technology and precipitation hardening. Design/methodology/approach: the work evaluated the impact of casting and heat treatment technology on the mechanical properties and structure of AlMg10 alloy castings. The tests were performed on 200 mm × 100 mm × 25 mm plate castings produced by gravity casting methods for sand and metal moulds and by a liquid state press moulding technology. Castings made with these technologies solidify in substantially different heat- evaporation conditions and exhibit varying degrees of primary structure fragmentation. Metallographic and strength tests were performed on raw castings and after heat treatment. Findings: The changes in the morphology and size of primary crystals and the dispersion of the reinforcing phase according to the casting solidification rate and the precipitation hardening treatment were analyzed. Solidifying castings in the form of sand show a globular structure, whereas in die and press castings, a typically dendritic structure occurs, with the dendritic crystals in pressed castings being much smaller in size than the die castings. In castings which were not heat-treated, the reinforcing phase of Al3Mg2 occurs in interdendritic spaces, and its dispersion increases with the rate of cooling. After supersaturation and ageing treatments, the phase α has a grain structure in all samples. The largest dispersion of reinforcing molecules is characterized by press castings. In a raw state, the highest mechanical properties are shown by castings made in the form of sand and the method of pressing in a liquid state. Heat treatment of AlMg10 alloy castings significantly influences the increase of mechanical indexes in all castings investigated. The highest features of Rm are approx. 330 MPa and A5 above 10% is obtained in castings made by the press method. Research limitations/implications: Particular attention should be paid to the avoidance of the effects of slag inclusion, shrinkage and magnesium oxidation during casting of AlMg10 alloys. In die castings of a plate type, due to own stresses, a significant decrease in mechanical properties occurs. Practical implications: The most advantageous mechanical properties of AlMg10 alloy castings are obtained by using liquid-state pressing technology. In addition, this technology makes it possible to produce thin-walled castings of high dimensional accuracy, high air- tightness, fine grain structure, lack of surface defects and low roughness. Originality/value: The paper presents the possibility of improving the mechanical properties of AlMg10 castings by applying heat treatment. It has been proven that the casting method has a significant effect on the mechanical properties of the castings.


2013 ◽  
Vol 765 ◽  
pp. 496-500 ◽  
Author(s):  
Dawid Kapinos ◽  
Marcin Szymanek ◽  
Bogusław Augustyn ◽  
Maciej Gawlik

The article presents the change in mechanical properties of AlZn9Mg2.5Cu1.8 alloy resulting from the process of solution heat treatment and aging. The heat treatment was performed on a unique UMSA (Universal Metallurgical Simulator and Analyzer) device. The aim of the study was to determine optimum heat treatment parameters for the tested alloy of ultrafine grain structure obtained by Rapid Solidification (RS). To achieve this purpose, heat treatment to the T4 and T6 condition was carried out. The solution heat treatment was carried out at a constant temperature of 460 °C for 2 hours, while the time - temperature parameters of the aging process varied. The treatment undertaken resulted in improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document