Design and Application of High-Efficiency and Energy-Saving Liner in Coal Pulverizer

2011 ◽  
Vol 308-310 ◽  
pp. 237-240
Author(s):  
Xiang Lu ◽  
Li Jun Ren

The process of liner wear and the changing characteristics of the ability of crushing and grinding in the coal pulverizer are analyzed, a new type of cylinder liner is developed, which has a multi-step wave crest. The small balls on the liner are stuck by the steps, in this way, the wear of the liner wave crest is lightened, so it can keep a long-term stability, it also can take the balls to a reasonable height, increase the number of the balls which are taken by the wave crest and make the dropping points scattered, as result of that, it substantially increased the coal pulverizer's crushing and grinding efficiency; Also the wave crest of the liner can be dismantled from the base plate and individually replaced, so it made a great reduce in the material consumption of liner. The test shows that, with appropriate use of the balls, the liner can reduce the ball charge by 35-50%, reduce power consumption by 30-40%,it also can keep the coal pulverizer's output and improve milling fineness.

2021 ◽  
pp. 1-27
Author(s):  
Yichen Bao ◽  
Kai Liu ◽  
Quan Zheng ◽  
Lulu Yao ◽  
Yufu Xu

Abstract Pickering emulsion is a new type of stable emulsion made by ultra-fine solid particles instead of traditional surfactants as stabilizers, which has received widespread attention in recent years. The preparation methods of stator-rotor homogenization, high-pressure homogenization, and ultrasonic emulsification were compared with others in this work. The main factors affecting the stability of Pickering emulsion are the surface humidity of the solid particles, the polarity of the oil phase, and the oil-water ratio. These factors could affect the nature of the solid particles, the preparation process of Pickering emulsion and the external environment. Consequently, the long-term stability of Pickering emulsion is still a challenge. The tribological investigations of Pickering emulsion were summarized, and the multifunctional Pickering emulsion shows superior prospects for tribological applications. Moreover, the latest development of Pickering emulsion offers a new strategy for smart lubrication in the near future.


2019 ◽  
Vol 9 (20) ◽  
pp. 4393 ◽  
Author(s):  
Jien Yang ◽  
Songhua Chen ◽  
Jinjin Xu ◽  
Qiong Zhang ◽  
Hairui Liu ◽  
...  

Perovskite solar cells (PSCs) employing organic-inorganic halide perovskite as active layers have attracted the interesting of many scientists since 2009. The power conversion efficiency (PCE) have pushed certified 25.2% in 2019 from initial 3.81% in 2009, which is much faster than that of any type of solar cell. In the process of optimization, many innovative approaches to improve the morphology of perovskite films were developed, aiming at elevate the power conversion efficiency of perovskite solar cells (PSCs) as well as long-term stability. In the context of PSCs research, the perovskite precursor solutions modified with different additives have been extensively studied, with remarkable progress in improving the whole performance. In this comprehensive review, we focus on the forces induced by additives between the cations and anions of perovskite precursor, such as hydrogen bonds, coordination or some by-product (e.g., mesophase), which will lead to form intermediate adduct phases and then can be converted into high quality films. A compact uniform perovskite films can not only upgrade the power conversion efficiency (PCE) of devices but also improve the stability of PSCs under ambient conditions. Therefore, strategies for the implementation of additives engineering in perovskites precursor solution will be critical for the future development of PSCs. How to manipulate the weak forces in the fabrication of perovskite film could help to further develop high-efficiency solar cells with long-term stability and enable the potential of future practical applications.


2020 ◽  
Vol 1 (9) ◽  
pp. 3439-3448
Author(s):  
Mailde S. Ozório ◽  
Willian X. C. Oliveira ◽  
Julian F. R. V. Silveira ◽  
Ana Flávia Nogueira ◽  
Juarez L. F. Da Silva

Despite high photo-conversion efficiency, the short long-term stability and toxicity issues have prevented lead-based perovskites from becoming the standard in high efficiency solar cells.


1986 ◽  
Vol 70 ◽  
Author(s):  
R. E. Rocheleau ◽  
S. C. Jackson. ◽  
S. S. Hegedus ◽  
B. N. Baron

ABSTRACTChemical vapor deposition techniques, in particular plasma enhanced CVD, have been used to produce high quality a-Si:H materials. Continuing research is directed toward increased device performance, improved stability, and translation of scale to commercial production. A part of this effort is the evaluation of alternate CVD techniques which in addition to providing technical options for high efficiency and long term stability are likely to lead to improved understanding of the relationships between deposition processes and material properties. A relatively new technique for depositing a-Si:H is photo-CVD which utilizes ultraviolet light to initiate the decomposition of silane or disilane. The best results from both materials properties and device efficiency points of view have been achieved using mercury sensitized photo-CVD. Recently, a 10.5% efficient a-Si:H p-i-n photovoltaic cell, fabricated by photo-CVD, was reported [1]. A limitation in photo-CVD has been preventing deposition on the UV transparent window. In this paper we describe a new photo-CVD reactor with a moveable UV-transparent Teflon film and secondary gas flows to eliminate window fouling. The deposition and opto-electronic characterization of intrinsic a-Si:H and a-SiGe:H and p-type a-SiC:H are described. Finally, preliminary results of p-i-n solar cells are presented.


2015 ◽  
Vol 3 (5) ◽  
pp. 2344-2352 ◽  
Author(s):  
Li Tao ◽  
Zhipeng Huo ◽  
Yong Ding ◽  
Yi Li ◽  
Songyuan Dai ◽  
...  

A quasi-solid-state dye-sensitized solar cell with high photoelectric conversion efficiency (9.61%) and long-term stability is fabricated with a low molecular mass organogelator based gel electrolyte.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sun Heang So ◽  
Kyung Kwang Joo ◽  
Ba Ro Kim ◽  
Bong Keon Kim ◽  
Seung Chan Kim ◽  
...  

A feasibility study on a new type of liquid scintillator based on water has been performed. Mainly due to the differences in polarities between water and oil, organic solvents are not mixed in water. In order to make a liquid scintillator based on water, a surfactant that contains hydrophilic and hydrophobic groups is used. The surfactant keeps water and organic solvents apart in solution. Good physical and optical parameters and long-term stability are required to use liquid scintillator based on water in massive detector for the next generation neutrino experiments. In this paper, we report the characteristics and the possibility of liquid scintillators using water with various new surfactants.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoqiang Yu ◽  
Qian Zhang ◽  
Xin Liu ◽  
Ning Xu ◽  
Lin Zhou

Solar interfacial evaporation, featured by high energy transfer efficiency, low cost, and environmental compatibility, has been widely regarded as a promising technology for solar desalination. However, the interplay between energy transfer and water transport in the same channels suggests that the tradeoff between high efficiency and long-term stability inherently exists in conventional photothermal nanomaterials. We summarize state-of-the-art research on various anti-salt clogging photothermal microstructures as long-term stable interfacial solar evaporators for solar desalination. The review starts with an overview of the current status and the fundamental limit of photothermal materials for solar desalination. Four representative strategies are analyzed in detail with the most recent experimental demonstrations, including fluid convection enhancement, surface wettability engineering, energy-mass-path decoupling, and surface chemistry engineering. Finally, this article focuses on the challenges in anti-salt clogging solar interfacial evaporators and potential point-of-use applications in the future.


2021 ◽  
Author(s):  
Jianqiao LIU ◽  
Ye HONG ◽  
Xinyue TIAN ◽  
Xiangxu MENG ◽  
Ge GAO ◽  
...  

Stannous chloride and thiourea are used as source materials to prepare SnO2 quantum dots in the aqueous solution by a facile hydrolysis-oxidation process. The quantum dots have an average size of 1.9 nm with good dispersibility as well as long-term stability, and are validated to be an effective photocatalyst for the degradation of organic oil pollutants in contaminated water. The pollutant is removed by the quantum dots exposed to ultraviolet-visible irradiation at room temperature. The optimized condition is concluded to be a solution with quantum dot concentration of 10-3 mol/L and the degradation speed reaches the maximum at the 12 th hour after irradiation. After 48 hours, 91.9 % of octane is removed, concluding a high degradation efficiency. The prepared SnO2 quantum dots are potentially applicable in the remediation of marine environment as they hold the advantages of high efficiency, low cost and being environmental-friendly. The promotion and inhibition mechanisms of the photocatalytic SnO2 QDs at low and high concentrations are discussed.


Sign in / Sign up

Export Citation Format

Share Document