Study on Hot Dip and Coating Structure of 55% Al-Zn Alloy Coated Steel

2011 ◽  
Vol 415-417 ◽  
pp. 276-280 ◽  
Author(s):  
Yan Hong Leng ◽  
Yun Li Feng ◽  
Meng Song

Hot dip galvanizing treatments of Galvalume were studied by using methods of Gleeble thermal simulation experiment and optical microscopy(OM), scanning electronic microscopy (SEM), X-ray energy dispersive analysis(EDAX), X-ray diffraction(XRD) and so on. Meanwhile, surface morphology, microstructure, phases and the respective compositions of Al-Zn alloy coating plate were investigated, the formation of hot dipped 55%Al-Zn alloy coating were analyzed. The results show that to get better coated surface, in-zinc pot temperature should be controlled in the range of 590~610°C, and height of air-knife nozzle should be kept in the range of 150~200mm. Surface layer of 55%Al-Zn alloy coating is covered by Al-Zn alloy, the intermediate alloy layer is consisted of binary and ternary compounds, such as θ phase (FeAl3), Al0.3Fe3Si0.7and Al3.21Si0.47.

2011 ◽  
Vol 704-705 ◽  
pp. 1406-1409
Author(s):  
Meng Song ◽  
Yun Li Feng ◽  
Jing Bo Yang

Annealing and dip galvanizing treatments of Galvalume were studied by using methods of Gleeble thermal simulation experiment and optical microscopy (OM), scanning electronic microscopy (SEM), X-ray energy dispersive analysis (EDAX), X-ray diffraction (XRD) and so on. Meanwhile, surface morphology, microstructure, phases and the respective compositions of Al-Zn alloy coating plate were analyzed. The results show that decreased rate and prolonged time of annealing treatment cause less effect on process ability of product, which all because of the short time of annealing process in continuous aluminum-zinc treatment. However, coarse grain which causes low strength, high elongation and r value occurs when rising annealing temperature. To get better coated surface, in-zinc pot temperature should be controlled in the range of 590~610°C, and height of air-knife nozzle should be kept in the range of 150~200mm. Surface layer of 55%Al-Zn alloy coating is covered by Al-Zn alloy, the intermediate alloy layer is consisted of binary and ternary compounds, such as θ phase (FeAl3), Al0.3Fe3Si0.7 and Al3.21Si0.47. Keywords: Galvalume, Process, Microstructure, Properties


2011 ◽  
Vol 239-242 ◽  
pp. 773-776
Author(s):  
Li Yang ◽  
Gang Li

In order to improve the wear resistance of mild steel products, the Fe-based alloy layer was melted on the surface of mild steel by high-frequency induction cladding. Using scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction observation of microstructure of the alloy coating, wear resistance of the coating was evaluated. The results showed that: between the coating and the substrate is metallurgical bonded; The microstructure of coating layer was compact actinomorphous structure with plentiful nubby and strip eutectics; Actinomorphous structure was mixed structure of martensite and γ alloy solid solution covered with a large number floriform and dendrite eutectic; The coating has high hardness and good wear resistance.


2012 ◽  
Vol 184-185 ◽  
pp. 1175-1180
Author(s):  
Guo Liang Li ◽  
Xiao Hua Jie ◽  
Bi Xue Yang

Amorphous Cr–C alloy coating was prepared by electrodepositing. The microhardness of the coating was tested after annealing from 100°C to 800°C and the crystallization evolution was studied by the analysis of X-ray diffraction (XRD) and differential scanning caborimetry (DSC). The results showed that the crystallization evolution of the coating began at 300°C and finished around 450°C, and intermetallic compound Cr7C3and Cr23C6appeared when heat treatment temperature reached around 600°C. The microhardness, corrosion resistance as well as the adhesion of the coating all increased first with the temperature and then dropped until it attained the proper values. The microhardness reached the maximum of 1610HV0.025at 600°C. While the corrosion resistance and the adhesion force attained the peak value at about 400°C.


2016 ◽  
Vol 873 ◽  
pp. 33-37
Author(s):  
Jie Ye ◽  
Xiao Ping Lin ◽  
Yun Dong ◽  
Bo Li ◽  
Gao Peng Xu ◽  
...  

In this study, we investigated the aging strengthening of Mg-Zn-Cu alloy based on component optimization design by FactSage software, optical microscope (OM), X-ray diffraction (XRD) and Vickers hardness tester. The results show that the precipitation rate of MgZn2 phase in Mg-6Zn-1Cu is significantly higher than that of the other alloys. When Mg-6Zn-1Cu alloy is subjected to aging at 160<strong>°C</strong> for different time, the phase consists of α-Mg, MgCu2 and MgZn2. The content of main strengthening phase MgZn2 is increasing with the prolonging of aging time. When Mg-6Zn-1Cu alloy aged at 160<strong>°</strong><strong>C</strong> for 10h, the kinetics of precipitation is considerably accelerated. The results indicate that the hardening produced in the Cu-containing alloy is considerably higher than in the Mg-Zn alloy. Therefore, based on component optimization design to establish Mg-Zn-Cu alloy solidification database, and to predict the phase equilibrium and thermodynamic properties of the alloy, is an effective method for the development of new magnesium alloy.


2011 ◽  
Vol 704-705 ◽  
pp. 1095-1099
Author(s):  
Peng Liu ◽  
Hao Ran Geng ◽  
Zhen Qing Wang ◽  
Jian Rong Zhu ◽  
Fu Sen Pan ◽  
...  

Effects of AlN addition on the microstructure and mechanical properties of as-cast Mg-Al-Zn magnesium alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing. Five different samples were made with different amounts of AlN(0wt%, 0.12wt%, 0.30wt%, 0.48wt%, 0. 60wt%). The results show that the phases of as-cast alloy are composed of α-Mg,β-Mg17Al12. The addition of AlN suppressed the precipitation of the β-phase. And, with the increase of AlN content, the microstructure of β-phase was changed from the reticulum to fine grains. When AlN content was up to 0.48wt% in the alloy, the β-phase became most uniform distribution. After adding 0.3wt% AlN to Al-Mg-Zn alloy, the average alloy grain size reduced from 102μm to 35μm ,the tensile strength of alloy was the highest. The average tensile strength increased from 139MPa to 169.91MPa, the hardness increased from 77.7HB to 98.4HB, but the elongation changes indistinctively. However, when more amount of AlN was added, the average alloy grain size did not reduce sequentially and increased to 50μm by adding 0.6wt% AlN and the β-phase became a little more. Keywords: Al-Mg-Zn alloy; AlN; β-Mg17Al12; Tensile strength


2011 ◽  
Vol 306-307 ◽  
pp. 901-906 ◽  
Author(s):  
Huan Ming Chen ◽  
Ya Hong Gao ◽  
Qiong Lv ◽  
Dong Yang ◽  
Xin Xin Lin

The Ni-P-W/nano-Al2O3composite coatings were deposited on the surface of sintered NdFeB permanent magnet by electroless plating method. The morphology and the phases of Ni-P-W/nano-Al2O3composite coatings were investigated using scanning electron microscopy and X-ray diffraction respectively. The hardness and the corrosion resistance of the composite coatings were also tested. The results indicated that the composite coatings morphology appears closely nodules morphology, and the microhardness increases with increasing incorporation of Al2O3ratio. Compared with NdFeB magnet and Ni-P-W alloy coatings, the corrosion resistance of the composite coatings was superior to that of the NdFeB magnet and the alloy coating obviously.


2011 ◽  
Vol 121-126 ◽  
pp. 335-339
Author(s):  
Xian Jin Yu ◽  
Li Peng Zhang ◽  
Zhi Wei Ge ◽  
Yun Hui Dong ◽  
Dang Gang Li ◽  
...  

Al-Mn alloy coatings were electrodeposited on an iron substrate from AlCl3-NaCl-KCl low-temperature molten salts with anhydrous MnCl2 enhanced by the addition of NdCl3.The microstructure and properties of the Al-Mn alloy coatings were investigated, and scanning electron microscopy, X-ray diffraction, and polarization curves were used to determine the composition, surface morphology, phase structure, and corrosion resistance of the obtained deposits. The results show that the surface coatings were smooth, and that the crystallites were dense and uniform when 0.23 wt% NdCl3 was added to the molten salt. An amorphous mixture of Al and Al6Mn was obtained. NdCl3 enhanced the corrosion resistance and increased the hardness of the single amorphous phase alloys. The pitting potential of the coating was approximately −1.04V, and its hardness was 392 kgf/mm2.


1992 ◽  
Vol 36 ◽  
pp. 185-196
Author(s):  
Ping He ◽  
John A. Woolkm ◽  
Federico O. Sequeda

AbstractX-ray diffraction measurements were performed on CoαPt1-α/Pd, Co/Pd, Co/Fe, and Co/W multilayer samples with different structures, such as CoαPt1-α alloy layer composition α, bilayer thickness, and number of bilayers. Multilayer samples were made by magnetron sputtering in a chamber with multi-parallel guns and a position controllable substrate. CoαPt1-α alloy layers were deposited by cosputtering from Co and Pt targets mounted on guns tilted towards a common substrate. Compositions of Co and Pt in CoαPt1-α layers were varied by use of different sputtering power. The thicknesses of magnetic and non-magnetic layers in multilayered samples were also systematically changed to investigate the relationship between x-ray diffraction lines and crystalline structures of multilayered films. It was found that the position of the main diffraction peak from multilayered films was solely determined by the crystalline structures within bilayers rather than bilayer thickness. A model was introduced to calculate microstructural parameters such as the thickness of interfaces and compositions at interfaces.


Sign in / Sign up

Export Citation Format

Share Document