Simulation Analysis on Crowd Evacuation of the Subway Train Fire

2012 ◽  
Vol 424-425 ◽  
pp. 1215-1219 ◽  
Author(s):  
Xin Han ◽  
Jin Ning Ma ◽  
Bei Hua Cong

Nowadays urban subway transport system has transformed its role from auxiliary facilities of urban traffic into a key component in people's lives. It is imperative to promote fire safety level of subway system. This paper simulates the crowd evacuation of the subway train fire. Four passenger densities within the train are set and the results of the software simulation with the calculation results based on specification are compared. It is relatively reliable to reflect the influence of the passenger density on the crowd evacuation, and some suggestions are also given out

2012 ◽  
Vol 166-169 ◽  
pp. 2726-2730
Author(s):  
Bo Si Zhang ◽  
Shou Xiang Lu

Subway plays an important role in urban transport system. Fire as the major risk of the subway, is gaining increasing concern. In this study, fire simulation is performed to estimate fire safety of different compartments of the subway train. Result shows that the two compartments in the middle become dangerous at 150s and the compartments in the two ends are not safe at 300s approximately. The other two compartments are always safe during the simulation time.


2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


2021 ◽  
pp. 12-17
Author(s):  
Юрий Николаевич Шебеко ◽  
Алексей Юрьевич Шебеко

Проведен краткий анализ понятий, связанных с расчетом пределов огнестойкости строительных конструкций. Дано определение термина «фактический предел огнестойкости», которое отсутствует в нормативных документах по пожарной безопасности. Отмечено, что это связано с использованием на практике значений пределов огнестойкости, определенных для стандартных температурных режимов пожара, в то время как на практике указанные температурные режимы, как правило, отличаются от стандартных. Предложена концепция определения фактического предела огнестойкости, основанная на моделировании воздействия на строительную конструкцию температурного режима реального пожара (например, с помощью программного комплекса FDS 6). The brief analysis of definitions connected with estimation of fire resistance limits of building structures is conducted. There is given the determination of term “actual fire resistance limit” that is absent in fire safety normative documents. It is caused by practical application of the fire resistance limits determined for standard temperature regimes of fires only, but at the same time the temperature regimes of real fires as a rule differ from the standard regimes. There is proposed the method for determination of the actual fire resistance limit based on the modeling of influence of the real fire temperature regime on buildings structures. This modeling can be made by an application of CFD methods (for example, with the help of FDS 6 software complex). The required reliability of the building structure is considered. The proposed method can solve the problem of practical applicability of certain structural unit during designing buildings and structures, for which the use of the resistance limits obtained for the standard fire temperature regimes can lead to unjustified economic expenditures without an appropriate elevation of fire safety level of the object.


2014 ◽  
Vol 915-916 ◽  
pp. 146-149
Author(s):  
Yong Sheng Wang ◽  
Li Hua Wu

The finite element model of the space KX-Joint was established using ANSYS software, and the failure mode and ultimate bearing capacity of KX-joint were researched. Calculation results show that the surface of chord wall on the roots of compression web members was into the plastic in K plane, and the holding pole without the plastic area and the local buckling failure happened in the surface of chord wall on the roots of Compression Web Members in X plane; The bearing capacity of the joint increased with the Chord diameter, which was appears in the form of power function.


2020 ◽  
Vol 206 ◽  
pp. 03004
Author(s):  
Qiao Jianzhe ◽  
Shou Youping ◽  
Zhao Junjie

In general, transportation of Dangerous Goods in the port and shipping industry is mainly based on the container. This paper summarized the types of container terminal accidents, and put forward a method to select source of pollutants, and showed pollution range of typical accidents, provided the basis for the decision of management department. Taking a domestic container terminal as an example, the calculation results show that, under the premise of taking corresponding measures, the pollution range of accidents is not wide, and the risk is controllable.


2019 ◽  
Vol 9 (13) ◽  
pp. 2606 ◽  
Author(s):  
Katarzyna Kubicka ◽  
Urszula Pawlak ◽  
Urszula Radoń

The concept of fire safety covers an extremely vast scope of issues. To ensure an adequate fire safety level, it is necessary to combine research and actions in several fields, such as the mathematical, physical, or numerical modelling of a fire phenomenon. Another problem is to design different types of fire protection, including alarm systems, sprinkler systems, and also roads and evacuation systems, in a manner that ensures maximum safety for the building’s users. A vital issue is the analysis of the static-strength response of the structure under fire conditions. This study, concerned with such analyses, is limited to steel truss structures. In technical approvals, manufacturers of fire-proofing materials do not account for the character of the performance of individual structural members. The components in compression need thicker insulation than those in tension. This phenomenon is related to the fact that under fire conditions, the flexural buckling coefficient in compressed members is abruptly reduced with an increase in temperature. In turn, this increase in temperature leads to a fast reduction in resistance. In addition, members in tension have much higher resistance than those in compression in the basic design situation, i.e., at the instant of t = 0 min. Consequently, even a considerable decrease in the resistance of tension members is not as dangerous as that of compression members. Therefore, due to the nature of the performance of individual elements, fire-proofing insulation of every steel structure should be computationally verified. Additionally, in this paper, the influence of the type of fire insulation on the mechanical response of the structure was investigated. Calculations were carried out for different types of sprayed-on insulation, and also for contour and box insulation panels. The graphs show the behaviour of the elastic modulus, the yield point, and the resistance of the elements in the successive minutes of the fire for the different methods of fire protection used. The best results were obtained for vermiculite and gypsum spray.


2020 ◽  
Vol 12 (20) ◽  
pp. 8617
Author(s):  
Victoria Gitelman ◽  
Anna Korchatov ◽  
Wafa Elias

Bus priority routes (BPRs) promote public transport use in urban areas; however, their safety impacts are not sufficiently understood. Along with proven positive mobility effects, such systems may lead to crash increases. This study examines the safety impacts of BPRs, which have been introduced on busy urban roads in three major Israeli cities—Tel Aviv, Jerusalem and Haifa. Crash changes associated with BPR implementation are estimated using after–before or cross-section evaluations, with comparison-groups. The findings show that BPR implementation is generally associated with increasing trends in various crash types and, particularly, in pedestrian crashes at junctions. Yet, the results differ depending on BPR configurations. Center lane BPRs are found to be safer than curbside BPRs. The best safety level is observed when a center lane BPR is adjacent to a single lane for all-purpose traffic. Local public transport planners should be aware of possible negative implications of BPRs for urban traffic safety. Negative safety impacts can be moderated by a wider use of safety-related measures, as demonstrated in BPRs’ operation in Haifa. Further research is needed to delve into the reasons for the negative safety impacts of BPRs under Israeli conditions relative to the positive impacts reported in other countries.


2018 ◽  
Vol 204 ◽  
pp. 07017 ◽  
Author(s):  
Mardji ◽  
Andoko ◽  
Dani Prasetiyo

Chassis on the vehicle serves as the main weight support vehicle. Designing a precise chassis will give optimal results between the safety level and the size of the construction, so that finite element simulation analysis is required to know how strong the chassis sustains the load on it. The purpose of this research is to get the result of chassis simulation on UM electric car when getting the loading by using ANSYS 18.1 software. As for the step this study started from chassis modeling using Autodesk Inventor Professional 2018 software and finite element simulation using static structural feature in software ANSYS 18.1. From the simulation result obtained Equivalent Stress 59,983MPa, Equivalent Elastic Strain 33,25x10-5 mm / mm Total Deformation 2,43mm and safety factor 3,55.


Sign in / Sign up

Export Citation Format

Share Document