Physical and Mechanical Properties of Five Heat-Treated Hardwood Species

2012 ◽  
Vol 472-475 ◽  
pp. 1132-1134
Author(s):  
Jin Sun ◽  
Xiao Bo Wang ◽  
Xiao Jing Wang ◽  
Yan Lin ◽  
Zhen Zhong Gao

Five hardwood species (Schima superba Gardn, kapur( Dryobalanops sp.), ash (Fraxinus mandshurica Rupr.), birch(Betula platyphylla Suk.), tauari (Couratari sp.)) were conducted the Heat treatment at 185°C.. The results indicated that the dimensional stability, modulus of elasticity (MOE) increased greatly while the wettability decreased after treatment. There was a negative impact of heat treatment on MORs.

2020 ◽  
Vol 10 (18) ◽  
pp. 6273
Author(s):  
Aujchariya Chotikhun ◽  
Jitralada Kittijaruwattana ◽  
Emilia-Adela Salca ◽  
Salim Hiziroglu

The objectives of this study were to evaluate some of physical and mechanical properties of rubberwood (Hevea brasiliensis) as function of microwave heat treatment process. The specimens were heat treated at three temperature levels of 150 °C, 180 °C, and 220 °C for 20 min in a small microwave oven connected to a computer. Bending characteristics, namely modulus of elasticity (MOE), modulus of rupture (MOR) as well as hardness of the samples were tested. Dimensional stability in the form of swelling and water absorption of the specimens were also determined. Based on the findings in this work it appears that microwave can be used successfully for heat treatment of rubberwood. Overall mechanical properties of the samples were adversely influenced by the treatment. MOE, MOR and hardness values of the samples treated at a temperature of 220 °C had 2.37, 3.69, and 2.12 times reduced than those of control samples, respectively. Dimensional stability of the heat treated samples as a result of 2-h and 24-h water soaking improved. Micrographs take from scanning electron microscope (SEM) and transmission electron microscope (TEM) revealed that certain amount of damage took place in the cellwall of the treated specimens. Overall discoloration on the samples due to microwave heat treatment was found insignificant.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1114
Author(s):  
Bruno Esteves ◽  
Helena Ferreira ◽  
Hélder Viana ◽  
José Ferreira ◽  
Idalina Domingos ◽  
...  

The introduction of new species in forest management must be undertaken with a degree of care, to help prevent the spread of invasive species. However, new species with higher profitability are needed to increase forest products value and the resilience of rural populations. Paulownia tomentosa has an extremely fast growth. The objective and novelty of this work was to study the potential use of young Paulownia trees grown in Portugal by using heat treatment to improve its properties, thereby allowing higher value applications of the wood. The average chemical composition of untreated and heat-treated wood was determined. The extractive content was determined by successive Soxhlet extraction with dichloromethane (DCM), ethanol and water as solvents. The composition of lipophilic extracts was performed by injection in GC-MS with mass detection. Insoluble and soluble lignin, holocellulose and α-cellulose were also determined. Physical (density and water absorption and dimensional stability) and mechanical properties (bending strength and bending stiffness) and termite resistance was also determined. Results showed that extractive content increased in all solvents, lignin and α-cellulose also increased and hemicelluloses decreased. Compounds derived from the thermal degradation of lignin were found in heat-treated wood extractions. Dimensional stability improved but there was a decrease in mechanical properties. Resistance against termites was better for untreated wood than for heat-treated wood, possibly due to the thermal degradation of some toxic extractives.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4693-4703
Author(s):  
Alperen Kaymakci ◽  
Bahadır Çağrı Bayram

Effects of the heat treatment parameters were evaluated relative to some physical and mechanical properties of poplar wood (Populus alba L.) with use of two of the prominent multi criteria decision-making (MCDM) techniques: Entropy and The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). To meet this objective, the test samples were heat-treated at 120, 150, 180, and 210 °C for 2 and 4 h in a laboratory-scale oven. With increasing temperature and duration, the shrinkage and swelling ratios of heat-treated samples were improved. However, the bending strength, modulus of elasticity, and compression strength generally decreased with increasing process temperature and duration. According to (MCDM) analyses, thermal modification definitely improved the physical properties of wood up to a point. Bending strength was found to be the most important determinant of heat treatment success. The other determinants were identified as swelling, compression strength, shrinkage, and modulus of elasticity, respectively. Also, the best results were obtained at 120 °C for 2 h. In general, heat treatment above 150 °C or 4 h is not recommended.


2020 ◽  
Vol 22 (4) ◽  
pp. 909-918 ◽  
Author(s):  
M. M. Blaoui ◽  
M. Zemri ◽  
A. Brahami

AbstractEngineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. This paper presents a study of the influence of austenitization temperature, cooling rate, holding time and heating rate during the heat treatment on microstructure and mechanical properties (tensile strength, yield strength, elongation and hardness) of the C45 steel. Specimens undergoing different heat treatment lead to various mechanical properties which were determined using standard methods. Microstructural evolution was investigated by scanning electron microscopy (SEM). The results revealed that microstructure and hardenability of the C45 steel depends on cooling rate, austenitization temperature, holding time and heating rate.


Author(s):  
Ebenezer Adeyemi Iyiola ◽  
Babatola Olufemi ◽  
Victoria Olubukola Oyerinde ◽  
J. M. Owoyemi ◽  
Ayanleye Samuel

Aims: This work investigated the effect of thermal modification on some of the physical properties and mechanical properties of Daniella oliveri wood. Study Design: The study design used for this experiment was 3 x4 Factorial experiment in Completely Randomized Design. Place and Duration of Study: The study was conducted at the Federal University of Technology, Akure wood laboratory and the study lasted for 6 months. Methodology: Wood samples were thermally treated at the temperature of 120, 140, 160 and 180°C, for different durations of 1, 1.5 and 2 hours in a muffle furnace. The planks were air-dried to reduce the moisture content and then machined into the required dimensions in the direction parallel to grain with a circular saw. Thirty-nine defect-free samples of dimensions 20 mm × 20 mm × 60 mm were prepared for dimensional stability and compression test, static bending tests and the hardness tests to make a total of 117 samples. Results: The result showed that the average weight loss of the treated wood samples varied from 3.79% at 120°C for 1 hour to 7.51% at 180°C for 2 hours. The treatment led to reduction in density from 528 to 459 kg/m3 at 180°C for 2 hours. The heat treatment also led to reduction in water absorption and volumetric swelling of the treated samples. The mean value for Modulus of elasticity (MOE) ranges from 2.17x103 N/mm2 to 2.96 x 103 N/mm2 for the treated samples while the untreated was 2.22x103 N/mm2. Heat treatment brought about improvement in the maximum compressive strength and the Janka hardness parallel to the grain of wood samples. The value of compressive strength increased from 26.58 N/mm2 to 41.71 N/mm2 and hardness from 69.24 N to 75.5 N. It can therefore be concluded that thermal modification greatly enhanced the dimensional stability and mechanical properties of wood samples.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


2021 ◽  
Vol 899 ◽  
pp. 557-562
Author(s):  
Timur A. Borukaev ◽  
Luiza I. Kitieva ◽  
Abubekir Kh. Shaov ◽  
A.A. Kyarov

Based on magnesium carbonate and antimony oxide (V), MgO•Sb2O5 was obtained. In the formulation of fire-resistant cable PVC-plasticate, antimony (III) oxide was replaced by MgO•Sb2O5 and the fire resistance and physical and mechanical properties of the resulting compound were investigated. It is shown that the replacement of antimony (III) oxide in the composition of PVC cable compound MgO•Sb2O5 leads to the production of a compound that is not inferior in its characteristics to the original plastic compound. In particular, the fire resistance of cable PVC-plasticate, standard industrial formulation and with the obtained MgO•Sb2O5, is practically the same (OI=32%). It has been established that the physical and mechanical characteristics of the cable compound, when replacing antimony oxide (III) with MgO•Sb2O5 in the formulation, remain at the level of the original compound, while MgO×Sb2O5 will have a less negative impact on the environment.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6795-6810
Author(s):  
Nurul Fatiha Osman ◽  
Paimon Bawon ◽  
Seng Hua Lee ◽  
Pakhriazad Hassan Zaki ◽  
Syeed SaifulAzry Osman Al-Eldrus ◽  
...  

Particleboard was produced by mixing oil heat-treated rubberwood particles at different ratios, with the goal of achieving high dimensional stability. Rubberwood particles were soaked in palm oil for 2 h and heat treated at 200 °C for 2 h. The treated particles were soaked in boiling water for 30 min to remove oil and were tested for chemical alteration and thermal characterization via Fourier-transform infrared spectroscopy and thermogravimetric analysis. Particleboard was fabricated by mixing treated rubberwood particles (30%, 50%, and 70%) with untreated particles (70%, 50%, and 30%, respective to previous percentages) and bonded with urea-formaldehyde (UF) resin. The results revealed that oil-heat treated particles had greater thermal stability than the untreated particles. The addition of oil heat treated particles improved the physical properties of the particleboard with no significant reduction in mechanical strength. However, this was only valid for ratios of 70% untreated to 30% treated and 50% untreated to 50% treated. When a ratio of 70% oil heat treated particles was used, both the physical and mechanical properties were reduced drastically, due to bonding interference caused by excessive oil content. Particleboard made with a ratio of 5:5 (treated to untreated) exhibited the best physical and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document