Studies on Mechanical Properties and Structure of LLDPE/Nano-Montmorillonite Composites

2012 ◽  
Vol 510 ◽  
pp. 579-584
Author(s):  
Yu Xin Liu ◽  
Qi Yang ◽  
Fang Yang ◽  
Yong Fei Zhu ◽  
Xian Zhong Mo

Linear low-density polyethylene (LLDPE)/nano-montmorillonite (nano-MMT) composites were prepared by melting method. Mechanical test, scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and small angle light scattering (SALS) measurements were used to characterize the mechanical properties and structure of the LLDPE composite. The results indicated that the impact strength of LLDPE decreased with the increase of nano-MMT content. However, the tensile strength firstly increased and then decreased. The aggregation of nano-MMT in LLDPE happened at larger content. The spherulite size and crystallinity of LLDPE reduced with the addition of nano-MMT. Furthermore, it was found that the structure of the spherulite was destroyed by the nano-MMT. The microcrystal size of LLDPE also decreased with the increase of nano-MMT content.

2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


Author(s):  
Mohammad K. Hossain ◽  
Samira N. Shaily ◽  
Hadiya J. Harrigan ◽  
Terrie Mickens

A completely biodegradable composite was fabricated from an herbal polymer, soy protein concentrate (SPC) resin. Soy protein was modified by adding 30 wt% of glycerol and 5 wt% of poly vinyl alcohol (PVA) to enhance its mechanical as well as thermal property. 3%, 5%, 10%, and 20% nanoclay (NC) were infused into the system. To evaluate its mechanical properties, crystallinity, thermal properties, bonding interaction, and morphological evaluation, tensile, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) tests, and optical microscopy (OM) and scanning electron microscopy (SEM) evaluation were performed. Tensile tests showed that the addition of nanoclay improved the mechanical properties of the modified resin. Soy protein is hydrophilic due to the presence of amino acids that contain various polar groups such as amine, carboxyl, and hydroxyl. As a result, polar nanoclay particles that are exfoliated can be evenly dispersed in the SPC resin. From experimental results, it is clear that adding of nanoclay with SPC resin significantly increased the stiffness of the SPC resin. A combination of 5% clay, 30% glycerol, and 5% PVA with the modified SPC resulted in the maximum stress of 18 MPa and Young modulus of 958 MPa. The modified SPC showed a reduced failure strain as well. X-ray diffraction curves showed an improvement of crystallinity of the prepared resin with increasing amount of nanoclay. Interaction among soy, glycerol, PVA, and nanoclay was clearly demonstrated from the FTIR analysis. Optical microscopy (OM) and scanning electron microscopy (SEM) micrographs revealed rougher surface in the nanoclay infused SPC samples compared to that of the neat one. SEM evaluation revealed rougher fracture surface in the NC infused samples.


2014 ◽  
Vol 989-994 ◽  
pp. 305-307
Author(s):  
Zhao Xia Hou ◽  
Hang Xin Li ◽  
Shao Hong Wang ◽  
Mei Han Wang ◽  
Xiao Dan Hu

Transparent oxyfluoride tellurite glass-ceramics containing CaF2 nanocrystals were prepared by high temperature melting method. The glass-ceramics were characterized by Differential scanning calorimetry, X-ray diffraction and scanning electron microscope, respectively. The results showed that the CaF2 nanocrystals were spherical and the average size was found to be 60 nm.


2004 ◽  
Vol 126 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Rong Liu ◽  
Matthew X. Yao ◽  
Xijia Wu

Two cobalt-based superalloys containing 1.6% and 2% carbon respectively were studied, with the emphasis on the influence of the carbon content on their microstructures, wear resistance, and mechanical properties. Phase formation and transformation in the microstructures were analyzed using metallographic, X-ray diffraction, and differential scanning calorimetry techniques. Wear resistance, tensile and fatigue behaviors of the alloys were investigated on a pin-on-disc tribometer, MTS machine and rotating-bending machine, respectively. It is found that the wear resistance was increased significantly with the carbon content. The mechanical properties of the alloys are also influenced by the carbon content, but the impact is not so significant as on the wear resistance. It was observed that the carbon content increased the yielding strength and fatigue strength, but decreased the fracture stress and fracture strain.


2007 ◽  
Vol 534-536 ◽  
pp. 829-832
Author(s):  
Hai Yi Lou ◽  
Wei Lu ◽  
Lei Yang ◽  
Biao Yan

Microstructure and mechanical properties of a newly developed Zn61Al34M5 (M=Cu, Si, RE, et al.) alloy obtained by warm-compacting sintering technique were studied using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) associated with measurements of mechanical properties. The results showed that the new alloy consisted of α-phase and η-phase and have good plasticity; its hardness increased by 10%~20% and density decreased by about 16% as compared with those of the traditional cast Zn-Al alloys.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Rosa Idalia Narro-Céspedes ◽  
María Guadalupe Neira-Velázquez ◽  
Luis Fernando Mora-Cortes ◽  
Ernesto Hernández-Hernández ◽  
Adali Oliva Castañeda-Facio ◽  
...  

Sodium montmorillonite nanoclay (Na+-MMT) was modified by plasma polymerization with methyl methacrylate (MMA) and styrene (St) as monomers and was denominated as Na+-MMT/MMA and Na+-MMT/St, respectively. This plasma modified nanoclay was used as reinforcement for polystyrene (PS) nanocomposites that were prepared by melt mixing. Pristine and modified Na+-MMT nanoclay were analyzed by the dispersion in various solvents, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results confirmed a change in hydrophilicity of the modified Na+-MMT, as well as the presence of a polymeric material over its surface. The pristine PS/Na+-MMT and modified PS/Na+-MMT/MMA and PS/Na+-MMT/St nanocomposites were studied with X-ray diffraction (XRD), differential scanning calorimetry (DSC), and TGA, as well as mechanical properties. It was found that the PS/Na+-MMT/St nanocomposites presented better thermal properties and an improvement in Young’s modulus (YM) in compared to PS/Na+-MMT/MMA nanocomposites.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document