Analysis on Instability of Surrounding Rock in Gob-Side Entry Retaining with the Character of Soft Rock Composite Roof

2012 ◽  
Vol 524-527 ◽  
pp. 396-403 ◽  
Author(s):  
De Chuan Yang ◽  
Ming Zhong Gao ◽  
Yun Hai Cheng ◽  
Wu Sheng ◽  
Jia Sheng Chen

The filling belt of gob-side entry retaining with the character of soft rock composite roof,deforms violently,affected by the fracture and rotation of the main roof,and is prone to instability.This essay,considering characteristecs of coal mine pressure behavior on -790m 1311 (1) working face ventilation roadway at DingJi coal mine in HuaiNan,puts forward structural mech -anics model of the key block of gob-side entry retaining,which is used to forecast the position of the fracture line of the main roof, and analyze the roof subsidence at the side of the filling belt;It applies FLAC and UDEC to simulate distribution of plastic zones of surrounding rock of gob-side entry retaining,and stress variation law of the immediate roof and the main roof along coal seam inclination.The results show that:stress concentration factor of the immediate roof on the filling belt is about 1.6,first decreasing and then increasing with increasing width of the filling belt,which indicates that reasonable width of the filling belt is 3.0 m in accordance with the requirement of economic security requirment. The filling belt has significantly wide distribution of the plastic zones,with its four corners obviously plasticized,and overlying strata above the filling belt at side of goaf suffering upward plasticization,which is the result of rotation of the main roof; Deform- ation instability of filling belt is mainly caused by fracture rotation of the main roof;Finally, the measures to reduce the instability of gob-side entry retaining with the character of soft rock comp- osite roof are put forward.

2021 ◽  
Author(s):  
Jindong Cao ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Qiang Fu ◽  
Yubing Gao

Abstract The high stress of the surrounding rock of Hexi Coal Mine easily leads to severe deformation of the retracement channel and the appearance of the mine pressure during the retreat severely affects the stability of the roadway. In order to solve the above problems, a roadway surrounding rock control technology is proposed and tested. The bidirectional energy-concentrated tensile blasting technology is used to perform directional cutting to cut off the stress propagation path. Firstly, the deformation mechanism of the roof is analyzed by establishing the deformation mechanical model of the roof of the retracement channel. Then, according to the geological conditions of working face 3314 and theoretical calculation, the key parameters of roof cutting and pressure releasing of retracement channel are determined, and through the numerical analysis of its cutting effect, the length of cutting seam is 11.5m, and the cutting angle is 10°. Finally, a field test is carried out on the retracement channel of 3314 working face to verify the effect of roof cutting. The results show that the deformation of the retracement channel and the main roadway is very small. In the process of connecting the working face and the retracement channel, the maximum roof to floor convergence is 141mm, and the two sides convergence is 79mm. After the hydraulic support was retracted, the maximum roof to floor convergence of the surrounding rock is 37 mm, and the two sides convergence is 33mm. The roof cutting and pressure releasing of the retracement channel ensures the safe evacuation of the equipment and the stability of the main roadway. The cutting effect is obvious for the release of pressure, which is of great significance to engineering practice.


2012 ◽  
Vol 256-259 ◽  
pp. 1443-1446
Author(s):  
Xing Lin Wen ◽  
Lin Hai Gao ◽  
Chuan Lei Li ◽  
Meng Meng Dong

The irregular face mechanized mining is one of the difficult problems in the field of mining engineering. In this thesis, the roadways of 4324 extremely irregular face in DaiZhuang Mine were taken as research object. Through on-site mine pressure observation, the deformation characteristics of the surrounding rock and support force was analyzed. Next the mine pressure appeared rule of the roadways was study. This study benefited that the production of 4324 mining face went on wheels, at the same time, it had important significance to production safety of irregular working face with similar conditions.


2013 ◽  
Vol 838-841 ◽  
pp. 1884-1890 ◽  
Author(s):  
Guang Long Qu ◽  
Yan Fa Gao ◽  
Liu Yang ◽  
Bin Jing Xu ◽  
Guo Lei Liu ◽  
...  

Compared with I-shaped and U-shaped supports in soft rock roadway, concrete-filled steel tubular (CFST) support, as a new supporting form, has stronger bearing capacity with reasonable price. So it is becoming more and more popular in roadway supporting of coal mine in China. In this article, the surrounding rock in soft rock roadway was classified into three different types: hard rock in deep coal mine, soft surrounding rock, extremely soft surrounding rock. And, according to the characteristics of deformation failure of the CFST support and the surrounding rock in the industrial tests, three different strength assessments, including assessment of axial compressive strength, assessment of lateral flexural performance, assessment of hardening rate of core concrete, were proposed through mechanical analysis and laboratory tests for the three different types of the surrounding rock, respectively. Moreover, aimed to insufficient flexural strength of the support or low hardening rate of the core concrete in some of the roadway supporting, strengthening lateral flexural performance or making early strength concrete was necessary for the above unfavorable situations. The laboratory test results showed that the ultimate bearing capacity for the CFST support with φ194*8mm of steel tube reinforced by φ38mm round steel was 31% greater than that of the unreinforced one, 177% greater than that of the U-shaped one with equivalent weight per unit length.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Denghong Chen ◽  
Chao Li ◽  
Xinzhu Hua ◽  
Xiaoyu Lu ◽  
Yongqiang Yuan ◽  
...  

Taking the occurrence conditions of the hard main roof in the deep 13-1 coal mining roadway in Huainan mining area as the research object, based on the mechanical parameters of the surrounding rock and the stress state of the main roof obtained by numerical simulation, a simply supported beam calculation model was established based on the damage factor D, main roof support reaction RA, RB, and critical range C (9 m) and B (7 m) at the elastoplastic junction of the solid coal side and mining face side (hereinafter referred to as “junction”). Considering that the damage area still has a large bearing capacity, the vertical stress of the main roof at the junction is K1γH (0.05γh, 0.15γh, and 0.25γh) and K2γH (0.01γh, 0.10γh, and 0.2γh). The maximum deflection is 21 mm, 324 mm, and 627.6 mm, respectively. According to the criterion of tensile failure, the maximum bending moment of the top beam is 209 mN·m at the side of the working face 3.1 m away from the roadway side when K1 = 0.15 and K2 = 0.10, and the whole hard main roof is in tensile failure except the junction. To control the stability of the top beam and simplify the supporting reaction to limit the deformation of the slope angle, RC and RD are used to construct the statically indeterminate beam. By adding an anchor cable and advance self-moving support to the roadway side angle, the problem of difficult control of the surrounding rock with a large deformation of the side angle roof is solved, which provides a reference for roof control under similar conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Like Wei

The shield pressure cannot always be used to represent the upper load of longwall panels, since its value is steady or even decreases by the yielding action. However, the leg pressure increment of the shield (LPIS) at the initial stage is not influenced by yielding and could therefore be an important factor to judge the state of overlying loads. In this study, a mechanical model is established to analyze the relationship between the overlying loads of the main roof and LPIS after cutting. There is a linear positive correlation between leg pressure increment and overlying loads and a second-order relationship between leg pressure increment and length of main roof cantilever in the proposed model. Therefore, it can be used to determine the magnitude of roof weighting strength in different periods as well as the length of the main roof cantilever in a period. Finally, the mine pressure difference between the period of fully mechanized mining and the period of fully mechanized caving mining in the MinDong-1 coal mine serves to verify the rationality of the proposed model.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yajun Wang ◽  
Haosen Wang ◽  
Manchao He ◽  
Qi Wang ◽  
Yafei Qiao ◽  
...  

Noncoal pillar mining with automatic formation of a roadway is a new coal mining method that is tailored to improve the coal resource recovery rate and reduce the investment in roadway tunneling. Using this proposed method, a reuse entry is formed by roof cutting instead of tunneling. In this paper, the S1201-II working face of the Ningtiaota Coal Mine was used as a case study. The stress distribution of surrounding rock and the roof deformation characteristics of the reused entry during the mining process of the second working face were studied through FLAC3D numerical simulations combined with field measurements. The results indicate that the zone close to the reused entry led to higher stress in advance. If this stress is superimposed with the lateral pressure of the adjacent mined working face, it will be more difficult to maintain the reused entry. In the engineering case study described here, the reused entry created a stress increase zone and a severe deformation zone in the range of 0–80 m in front of the working face, and its range was approximately 37.5% larger than an ordinary entry. The stress peak in the stress increase zone increased by approximately 34.7% over that of an ordinary entry. The maximum amount of deformation within the severe deformation zone increased by 94.4% over that of an ordinary entry. To properly control the surrounding rock stress and deformation of the reused entry, a dynamic pressure bearing support in front of the working face with adaptability to the large roof deformation and high support strength is proposed here. Field application results showed that the final roof deformation with the dynamic pressure bearing support can be satisfactorily controlled within 110∼130 mm. These findings can provide a reference for researchers and field engineering technicians when engaging in the support work of reused entry.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fei Liu ◽  
Zhanguo Ma ◽  
Yongsheng Han ◽  
Zhimin Huang

With the deployment of China’s energy strategy in the western regions, complex geological mining conditions such as thin bedrock and ultrathick seams in western China have caused a series of problems such as serious deformation of the surrounding rock at the ends of the working face and the increase in the lead abutment pressure of the roadways; the research on end roof deformation in the resource exploitation in western China has become one of the great demands of the industry. Based on the failure characteristics of rock mass, relying on the actual mining geological conditions of a coal mine in Inner Mongolia, the failure characteristics of the overlying rock strata under the influence of mining were simulated and analyzed using similar material simulation experiment, which intuitively reproduced the failure and deformation processes of the immediate roof, main roof, and key strata and revealed the mechanical mechanism of the directional weakening of the end roof. It is of great significance for the stability control of the surrounding rock at the end of the fully mechanized caving face in the thin bedrocks and ultrathick seams, reducing the abutment pressure of gate roadway and controlling the spontaneous combustion of residual coal in the goaf.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chaowen Hu ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Xingen Ma

As the mining depth increases, under the influence of high ground stress, the surrounding rock of deep mine roadways shows soft rock characteristics. Under the influence of mining disturbance at the working face, large deformation of the roadway has occurred. To control the large deformation of the roadway, many mines have adopted the form of combined support, which has continuously increased the support strength and achieved a certain effect. However, since the stress environment of the surrounding rock of the roadway has not been changed, large deformation of the roadway still occurs in many cases. Based on the theoretical basis of academician Manchao He’s “short cantilever beam by roof cutting,” this paper puts forward the plan of “presplitting blasting + combined support” to control the large deformation of the deep mine roadways. Without changing the original support conditions of the roadway, presplitting blasting the roof strata of the roadway, by cutting off the mechanical connection of the roof strata between the roadway and gob, improves the stress distribution of the roadway to control the large deformation. Through field tests, the results show that after presplitting blasting the roadway roof, the roadway roof subsidence is reduced by 47.9%, the ribs displacement is reduced by 45.7%, and the floor heave volume is reduced by 50.8%. The effect is significant.


Sign in / Sign up

Export Citation Format

Share Document