Performance of LiFePO4 Cathode Material Synthesized by a Low-Cost and Safe Method

2012 ◽  
Vol 538-541 ◽  
pp. 3003-3007
Author(s):  
Zhi Hua Li ◽  
Shan Chen ◽  
Bin Bin Xu

In order to decrease the synthesis costs and resolve safety care in synthesis process of LiFePO4, a novel synthesis approach was put forward. Instead of traditional reduction atmosphere Ar/H2(95%/5%), the reducing flow produced by the breakdown of sucrose independently is used as protective atmosphere. Then, carbon-coated LiFePO4 samples were synthesized by solid-state method using Li3PO4, FePO4, Fe powder as the raw materials, and sucrose as the carbon source. The results show that the LiFePO4/C sample in this flow exhibits excellent performance after 7 hours’ sintering at 650°C. It had an initial capacity of 141.8mAh/g at 16mA/g discharge current and the coulomb efficiency reached 98.95%. Furthermore, the specific capacity was almost not fade after 20 cycles. Our experiment results prove that our approach can replace the traditional atmosphere Ar/H2, and it helps reducing the energy consumption and cost, and is expected to be commercially feasible in the future.

2019 ◽  
Vol 16 (3) ◽  
pp. 398-404 ◽  
Author(s):  
Yang Zou ◽  
Jingyi Fei ◽  
Liangzhe Chen ◽  
Qingfeng Dong ◽  
Houbin Li

Background: 3,3,7,7-tetrakis (difluoramino) octahydro-1,5-dinitro-1,5-diazocine (HNFX), as an important oxidizer in propellants, has received much attention due to its high density and energy. However, there are many difficulties that need to be solved, such as complex synthetic processes, low product yield, high cost of raw materials and complicated purification. In the synthesis of HNFX, the intermediate named 1,5-bis (p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1, 5-diazocine (gem-diol), is difficult to synthesize. Methods: A simple method was used to synthesize the gem-diol. This prepared gem-diol was characterized by FT-IR, 1H NMR, melting point and mass spectrometry. In order to increase the yield of gem-diol, response surface methodology (RSM) was introduced to optimize experimental conditions. Results: After the establishment of the model, the optimal conditions of synthesis were found to be 9.33h for reaction time, 6.13wt. % for the concentration of NaOH and 1.38:1 for ratio of ECH (p-toluenesulfonamide): TCA (epichlorohydrin). Under the optimal conditions, the experimental value and the predicted value of yield were 22.18% and 22.92%, respectively. Conclusion: 1,5-bis (p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1,5-diazocine (gem-diol) can be synthesized using the low cost of chemical materials, including p-toluenesulfonamide, epichlorohydrin, sodium hydroxide and ethanol. Response surface methodology (RSM) is an effective method to optimize the synthesis process, thereby improving the yield of gem-diol.


2019 ◽  
Vol 55 (2) ◽  
pp. 167-170 ◽  
Author(s):  
Wei Liu ◽  
Yuping Cao ◽  
Wenzhuang Wang ◽  
Deyan Gong ◽  
Ting Cao ◽  
...  

The mechanochromic luminescence phenomenon was first reported in the low-cost mechanochemical (MC) synthesis process of a covalent organic framework (COF-TpMA (MC)) which shows excellent performance as a hydroxyl radical detector in living systems.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1345
Author(s):  
Md. Saifur Rahman ◽  
Md. Saif Hasan ◽  
Ashis Sutradhar Nitai ◽  
Sunghyun Nam ◽  
Aneek Krishna Karmakar ◽  
...  

Carboxymethyl cellulose (CMC) is one of the most promising cellulose derivatives. Due to its characteristic surface properties, mechanical strength, tunable hydrophilicity, viscous properties, availability and abundance of raw materials, low-cost synthesis process, and likewise many contrasting aspects, it is now widely used in various advanced application fields, for example, food, paper, textile, and pharmaceutical industries, biomedical engineering, wastewater treatment, energy production, and storage energy production, and storage and so on. Many research articles have been reported on CMC, depending on their sources and application fields. Thus, a comprehensive and well-organized review is in great demand that can provide an up-to-date and in-depth review on CMC. Herein, this review aims to provide compact information of the synthesis to the advanced applications of this material in various fields. Finally, this article covers the insights of future CMC research that could guide researchers working in this prominent field.


2012 ◽  
Vol 519 ◽  
pp. 92-95
Author(s):  
Feng Cao ◽  
Zhen Yu Fang ◽  
Fei Chen ◽  
Qiang Shen ◽  
Si Qing Wang ◽  
...  

Ammonia borane (AB) hydrides have been employed as disposable hydrogen (H2) sources for fuel cell applications, due to their high hydrogen capacity. In this paper, ammonia borane (AB) complex with high purity was synthesized by chemical method, using the low cost raw materials of NaBH4, CO2, and NH3. The thermal dynamic for the synthesis process is analyzed. The phase composition for the obtained ammonia borane (AB) complex powders was detected by X-ray diffraction (XRD) characterization. The results suggest that, very high purity ammonia borane (AB) complex powders were obtained, which was quite in agreement with the standard index of ammonia borane.


2021 ◽  
Author(s):  
Hu-Lin Liu ◽  
Feng-Zhen DANG ◽  
De-Wei NI ◽  
Chang-Qing LIU ◽  
Yun-Long XUE ◽  
...  

Abstract We developed a new method to synthesize single-phase transition metal carbide powders by combining citric acid complexing method and ball-milling dispersion. High-entropy carbides (Zr0.25Ti0.25Ta0.25Nb0.25)C (4TmC), (Zr0.2Ti0.2Ta0.2Nb0.2Hf0.2)C (5TmC-H) and (Zr0.2Ti0.2Ta0.2Nb0.2Mo0.2)C (5TmC-M) were successfully fabricated by this method using low-cost raw materials. The element and phase composition and microstructures of the obtained carbide powders were investigated. The relationships of synthesis process and temperature with chemical composition were also discussed. (Zr0.25Ti0.25Ta0.25Nb0.25)C can be obtained by a one-step process at 1550 °C, while (Zr0.2Ti0.2Ta0.2Nb0.2Hf0.2)C and (Zr0.2Ti0.2Ta0.2Nb0.2Mo0.2)C are fabricated by a two-step process of carbothermal reduction followed by solid solution at the temperatures not lower than 1850 °C and 1650 °C. The higher synthesis temperatures of the five-component carbides are attributed to the obvious sluggish diffusion effect induced by the larger lattice distortions. The particle sizes of (Zr0.25Ti0.25Ta0.25Nb0.25)C, (Zr0.2Ti0.2Ta0.2Nb0.2Hf0.2)C and (Zr0.2Ti0.2Ta0.2Nb0.2Mo0.2)C powders are 118.2±26.1 nm (at 1550 °C), 284.8±73.7 nm (at 1850 °C) and 65.5±13.9 nm (at 1750 °C), respectively.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 228
Author(s):  
Yi-Chen Huang ◽  
Yin-Ju Yen ◽  
Yu-Hsun Tseng ◽  
Sheng-Heng Chung

Lithium–sulfur batteries have great potential as next-generation energy-storage devices because of their high theoretical charge-storage capacity and the low cost of the sulfur cathode. To accelerate the development of lithium–sulfur technology, it is necessary to address the intrinsic material and extrinsic technological challenges brought about by the insulating active solid-state materials and the soluble active liquid-state materials. Herein, we report a systematic investigation of module-designed carbon-coated separators, where the carbon coating layer on the polypropylene membrane decreases the irreversible loss of dissolved polysulfides and increases the reaction kinetics of the high-loading sulfur cathode. Eight different conductive carbon coatings were considered to investigate how the materials’ characteristics contribute to the lithium–sulfur cell’s cathode performance. The cell with a nonporous-carbon-coated separator delivered an optimized peak capacity of 1112 mA∙h g−1 at a cycling rate of C/10 and retained a high reversible capacity of 710 mA∙h g−1 after 200 cycles under lean-electrolyte conditions. Moreover, we demonstrate the practical high specific capacity of the cathode and its commercial potential, achieving high sulfur loading and content of 4.0 mg cm−2 and 70 wt%, respectively, and attaining high areal and gravimetric capacities of 4.45 mA∙h cm−2 and 778 mA∙h g−1, respectively.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2019 ◽  
Author(s):  
Yu Wang ◽  
Nachuan Yang ◽  
Yi Shuai ◽  
Yunpeng Zhang ◽  
Kanghua Chen

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xing Shen ◽  
Quan Zhou ◽  
Miao Han ◽  
Xingguo Qi ◽  
Bo Li ◽  
...  

AbstractNa-ion batteries have been considered promising candidates for stationary energy storage. However, their wide application is hindered by issues such as high cost and insufficient electrochemical performance, particularly for cathode materials. Here, we report a solvent-free mechanochemical protocol for the in-situ fabrication of sodium vanadium fluorophosphates. Benefiting from the nano-crystallization features and extra Na-storage sites achieved in the synthesis process, the as-prepared carbon-coated Na3(VOPO4)2F nanocomposite exhibits capacity of 142 mAh g−1 at 0.1C, higher than its theoretical capacity (130 mAh g−1). Moreover, a scaled synthesis with 2 kg of product was conducted and 26650-prototype cells were demonstrated to proof the electrochemical performance. We expect our findings to mark an important step in the industrial application of sodium vanadium fluorophosphates for Na-ion batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 678
Author(s):  
Zhongkai Wu ◽  
Haifu Huang ◽  
Wenhui Xiong ◽  
Shiming Yang ◽  
Huanhuan Huang ◽  
...  

We report a novel Ni3S2 carbon coated (denoted as NCC) rod-like structure prepared by a facile one-pot hydrothermal method and employ it as a binder free electrode in supercapacitor. We coated carbon with glucose as carbon source on the surface of samples and investigated the suitable glucose concentration. The as-obtained NCC rod-like structure demonstrated great performance with a huge specific capacity of 657 C g−1 at 1 A g−1, preeminent rate capability of 87.7% retention, the current density varying to 10 A g−1, and great cycling stability of 76.7% of its original value through 3500 cycles, which is superior to the properties of bare Ni3S2. The result presents a facile, general, viable strategy to constructing a high-performance material for the supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document