Effect of Oxidized Myofibrils Protein Subjected to Mutiple Freeze-Thaw Cycles on N-Nitrosamine Formation in In Vitro Model System

2012 ◽  
Vol 550-553 ◽  
pp. 1590-1594 ◽  
Author(s):  
Hua Yang ◽  
Pei Pei Meng ◽  
Rui Wang ◽  
Pei Ran Li ◽  
Peng Li ◽  
...  

N-nitrosamine is a kind of carcinogenic substance, which is possibly formed in the reaction of nitrites with amino acids or secondary amines. Two in vitro model systems were designed to evaluate the influence of oxidized myofibrils protein subjected to repeated freeze-thaw cycles (0, 1, 2, 3, 4, 7, 10 times) on N-nitrosamine formation. Model system I contains diethylamine and sodium nitrite, while model system II contains only sodium nitrite as reaction solution. Oxidized myofibrils protein were added to both systems. The results revealed that as the number of freeze-thaw cycles increased, cross-linking of myosin heavy chains and the content of protein carbonyl increased, but the content of protein sulfydryl decreased, which indicates oxidization of protein occurred. The concentration of N-nitrosodiethylamine increased as the number of freeze-thaw cycles increased, especially after four cycles. Oxidized myofibrils protein promoted the formation of N-nitrosodiethylamine. The more the times of freeze-thaw cycles were subjected, the more oxidization of myofibrils protein occurred and the higher yield of the N-nitrosodiethylamine.

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1835
Author(s):  
Lisa Kraft ◽  
Martina Sauter ◽  
Guiscard Seebohm ◽  
Karin Klingel

Coxsackievirus B3 (CVB3) belongs to the enteroviruses, which are a well-known cause of acute and chronic myocarditis, primarily infecting cardiac myocytes. As primary human cardiomyocytes are difficult to obtain, viral myocarditis is quite frequently studied in vitro in different non-cardiac and cardiac-like cell lines. Recently, cardiomyocytes that have been differentiated from human-induced pluripotent stem cells have been described as a new model system to study CVB3 infection. Here, we compared iCell® Cardiomyocytes with other cell lines that are commonly used to study CVB3 infection regarding their susceptibility and patterns of infection and the mode of cell death. iCell® Cardiomyocytes, HeLa cells, HL-1 cells and H9c2 cells were infected with CVB3 (Nancy strain). The viral load, CVB3 RNA genome localization, VP1 expression (including the intracellular localization), cellular morphology and the expression of cell death markers were compared. The various cell lines clearly differed in their permissiveness to CVB3 infection, patterns of infection, viral load, and mode of cell death. When studying the mode of cell death of CVB3-infected iCell® Cardiomyocytes in more detail, especially regarding the necroptosis key players RIPK1 and RIPK3, we found that RIPK1 is cleaved during CVB3 infection. iCell® Cardiomyocytes represent well the natural host of CVB3 in the heart and are thus the most appropriate model system to study molecular mechanisms of CVB3-induced myocarditis in vitro. Doubts are raised about the suitability of commonly used cell lines such as HeLa cells, HL-1 cells and H9c2 cells to evaluate molecular pathways and processes occurring in vivo in enteroviral myocarditis.


2020 ◽  
Author(s):  
Isabel Karkossa ◽  
Anne Bannuscher ◽  
Bryan Hellack ◽  
Wendel Wohlleben ◽  
Julie Laloy ◽  
...  

Abstract Background The immense variety and constant development of nanomaterials (NMs) raise the demand for a facilitated risk assessment, for which knowledge on NMs mode of actions (MoAs) is required. For this purpose, a comprehensive data basis is of paramountcy that can be obtained using omics. Furthermore, the establishment of suitable in vitro test systems is indispensable to follow the 3R concept and to master the high number of NMs. In the present study, we aimed at comparing NM effects in vitro and in vivo using a multi-omics approach. We applied an integrated data evaluation strategy based on proteomics and metabolomics to four silica NMs and one titanium dioxide-based NM. For in vitro investigations, alveolar epithelial cells and alveolar macrophages were treated with different doses of NMs, and the results were compared to effects on rat lungs after short-term inhalations and instillations at varying doses with and without a recovery period.Results Since the production of reactive oxygen species (ROS) is described to be a critical biological effect of NMs, and enrichment analyses confirmed oxidative stress as a significant effect upon NM treatment in vitro in the present study, we focused on different levels of oxidative stress. Thus, we found opposite changes for proteins and metabolites that are related to the production of reduced glutathione in alveolar epithelial cells and alveolar macrophages, illustrating that NMs MoAs depend on the used model system. Interestingly, in vivo, pathways related to inflammation were affected to a greater extent than oxidative stress responses. Hence, the assignment of the observed effects to the levels of oxidative stress was different in vitro and in vivo as well. However, the overall classification of “active” and “passive” NMs was consistent in vitro and in vivo.Conclusions The consistent classification indicates both tested cell lines to be suitable for NM toxicity assessment even though the induced levels of oxidative stress strongly depend on the used model systems. Thus, the here presented results highlight that model systems need to be carefully revised to decipher the extent to which they can replace in vivo testing.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi265-vi265
Author(s):  
Zev Binder ◽  
Sarah Hyun Ji Kim ◽  
Pei-Hsun Wu ◽  
Anjil Giri ◽  
Gary Gallia ◽  
...  

Abstract Current model systems used for GBM research include traditional in vitro cell line-based assays and in vivo animal studies. In vitro model systems offer the advantages of being easy to use, relatively inexpensive, and fast growing. However, these models lack key elements of the pathology they are attempting to model, including the biochemical and biophysical microenvironment and three-dimensional structure inherent to human brain tissue. In vivo model systems address these limitations, but have restrictions of their own. Species differences may result in non-applicable results and animal experiments are often not designed like clinical trials. Evidence of the limitations of current GBM models is found in the disparity between basic research findings and successful new treatments for GBMs in the clinic. Here we present an alternative model system for the study of human GBM cell motility and invasion, which features advantages of both in vitro and in vivo model systems. Using human organotypic brain slices as scaffolding for tumor growth, we explored the dynamic process of GBM cell invasion within human brain tissue. To demonstrate the utility of the model system, we investigated the effects of depletion of integrin α V (ITGAV) and CD44 on GBM cell motility. These two cell-surface proteins have been identified to have key functions in GBM cell motility. However, knockdown of ITGAV had little effect on tumor cell motility in organotypics while CD44 knockdown significantly reduced cell movement. Finally, we compare motility results from cells in human brain slices to those from cells growing on standard Matrigel and in mouse brain organotypics. We found significant differences in motility depending on the substrate in which the cells were moving. Our findings highlight the physiologic characteristics of human brain organotypics and demonstrate the use of real-time imaging in the ex vivo system.


1972 ◽  
Vol 18 (12) ◽  
pp. 1968-1971 ◽  
Author(s):  
D. L. Collins-Thompson ◽  
N. P. Sen ◽  
B. Aris ◽  
L. Schwinghamer

The formation in culture of dimethyl- and diethyl-nitrosamine from sodium nitrite and secondary amines was brought about by Streptococcus species, but not by members of several other genera tested. This formation appears to be non-enzymic, pH dependent, and may be catalyzed by one or more bacterial metabolic products.


2021 ◽  
Author(s):  
Isabel Karkossa ◽  
Anne Bannuscher ◽  
Bryan Hellack ◽  
Wendel Wohlleben ◽  
Julie Laloy ◽  
...  

Abstract Background: The immense variety and constant development of nanomaterials (NMs) raise the demand for a facilitated risk assessment, for which knowledge on NMs mode of actions (MoAs) is required. For this purpose, a comprehensive data basis is of paramountcy that can be obtained using omics. Furthermore, the establishment of suitable in vitro test systems is indispensable to follow the 3R concept and to master the high number of NMs. In the present study, we aimed at comparing NM effects in vitro and in vivo using a multi-omics approach. We applied an integrated data evaluation strategy based on proteomics and metabolomics to four silica NMs and one titanium dioxide-based NM. For in vitro investigations, rat alveolar epithelial cells (RLE-6TN) and rat alveolar macrophages (NR8383) were treated with different doses of NMs, and the results were compared to effects on rat lungs after short-term inhalations and instillations at varying doses with and without a recovery period.Results: Since the production of reactive oxygen species (ROS) is described to be a critical biological effect of NMs, and enrichment analyses confirmed oxidative stress as a significant effect upon NM treatment in vitro in the present study, we focused on different levels of oxidative stress. Thus, we found opposite changes for proteins and metabolites that are related to the production of reduced glutathione in alveolar epithelial cells and alveolar macrophages, illustrating that NMs MoAs depend on the used model system. Interestingly, in vivo, pathways related to inflammation were affected to a greater extent than oxidative stress responses. Hence, the assignment of the observed effects to the levels of oxidative stress was different in vitro and in vivo as well. However, the overall classification of “active” and “passive” NMs was consistent in vitro and in vivo.Conclusions: The consistent classification indicates both tested cell lines to be suitable for NM toxicity assessment even though the induced levels of oxidative stress strongly depend on the used model systems. Thus, the here presented results highlight that model systems need to be carefully revised to decipher the extent to which they can replace in vivo testing.


2020 ◽  
Author(s):  
Anat Akiva ◽  
Johanna Melke ◽  
Sana Ansari ◽  
Nalan Liv ◽  
Robin van der Meijden ◽  
...  

AbstractBone formation (osteogenesis) is a complex process in which cellular differentiation and the generation of a mineralized organic matrix are synchronized to produce a hybrid hierarchical architecture. To study the mechanisms of osteogenesis in health and disease, there is a great need for functional model systems that capture in parallel both cellular and matrix formation processes. Stem cell-based organoids are promising as functional, self-organizing 3D in vitro models for studying the physiology and pathology of various tissues. However, for human bone, no such functional model system is yet available.This study reports the in vitro differentiation of human bone marrow stromal cells into a functional 3D self-organizing co-culture of osteoblasts and osteocytes, creating an organoid for early stage bone (woven bone) formation. It demonstrates the formation of an organoid where osteocytes are embedded within the collagen matrix that is produced by the osteoblasts and mineralized under biological control. Alike in vivo osteocytes the embedded osteocytes show network formation and communication via expression of sclerostin. The current system forms the most complete 3D living in vitro model system to investigate osteogenesis, both in physiological and pathological situations, as well as under influence of external triggers (mechanical stimulation, drug administration).


2004 ◽  
Vol 72 (1) ◽  
pp. 106-113 ◽  
Author(s):  
W. Edward Swords ◽  
Miranda L. Moore ◽  
Luciana Godzicki ◽  
Gail Bukofzer ◽  
Michael J. Mitten ◽  
...  

ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract infections, including otitis media and bronchitis. The persistence of NTHi in vivo is thought to involve bacterial persistence in a biofilm community. Therefore, there is a need for further definition of bacterial factors contributing to biofilm formation by NTHi. Like other bacteria inhabiting host mucosal surfaces, NTHi has on its surface a diverse array of lipooligosaccharides (LOS) that influence host-bacterial interactions. In this study, we show that LOS containing sialic (N-acetyl-neuraminic) acid promotes biofilm formation by NTHi in vitro and bacterial persistence within the middle ear or lung in vivo. LOS from NTHi in biofilms was sialylated, as determined by comparison of electrophoretic mobilities and immunochemical reactivities before and after neuraminidase treatment. Biofilm formation was significantly reduced in media lacking sialic acid, and a siaB (CMP-sialic acid synthetase) mutant was deficient in biofilm formation in three different in vitro model systems. The persistence of an asialylated siaB mutant was attenuated in a gerbil middle ear infection model system, as well as in a rat pulmonary challenge model system. These data show that sialylated LOS glycoforms promote biofilm formation by NTHi and persistence in vivo.


Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 385-394 ◽  
Author(s):  
DEREK M. McKAY

SUMMARYAnalyses of laboratory-based helminth-rodent model systems have been immensely useful in delineating the workings of the mammalian immune system. Investigations in the 1970s–1980s on the fate of the rat tapeworm,Hymenolepis diminuta, in rats and mice and the systemic and local responses evoked following infection have contributed directly to our knowledge of how permissive and non-permissive hosts respond to the challenge of infection with a helminth parasite. This convenient laboratory model system has, in the authors' opinion, regrettably received considerably less attention in recent years. With the goal of highlighting the utility of this model system, data is presented on: (1) the immune and enteric responses of rats and mice to infection withH. diminuta; (2) the ability of excretory or secretory products derived fromH. diminutato significantly reduce T cell and macrophage activationin vitro; and (3) how assessment ofH. diminuta-rodent models can be used to identify immune effector or regulatory mechanisms that can be translated into novel treatments for inflammatory and autoimmune disorders.


2009 ◽  
Vol 53 (6) ◽  
pp. 2605-2609 ◽  
Author(s):  
Anton Y. Peleg ◽  
Sebastian Jara ◽  
Divya Monga ◽  
George M. Eliopoulos ◽  
Robert C. Moellering ◽  
...  

ABSTRACT Nonmammalian model systems of infection such as Galleria mellonella (caterpillars of the greater wax moth) have significant logistical and ethical advantages over mammalian models. In this study, we utilize G. mellonella caterpillars to study host-pathogen interactions with the gram-negative organism Acinetobacter baumannii and determine the utility of this infection model to study antibacterial efficacy. After infecting G. mellonella caterpillars with a reference A. baumannii strain, we observed that the rate of G. mellonella killing was dependent on the infection inoculum and the incubation temperature postinfection, with greater killing at 37°C than at 30°C (P = 0.01). A. baumannii strains caused greater killing than the less-pathogenic species Acinetobacter baylyi and Acinetobacter lwoffii (P < 0.001). Community-acquired A. baumannii caused greater killing than a reference hospital-acquired strain (P < 0.01). Reduced levels of production of the quorum-sensing molecule 3-hydroxy-C12-homoserine lactone caused no change in A. baumannii virulence against G. mellonella. Treatment of a lethal A. baumannii infection with antibiotics that had in vitro activity against the infecting A. baumannii strain significantly prolonged the survival of G. mellonella caterpillars compared with treatment with antibiotics to which the bacteria were resistant. G. mellonella is a relatively simple, nonmammalian model system that can be used to facilitate the in vivo study of host-pathogen interactions in A. baumannii and the efficacy of antibacterial agents.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Niklas Schwarz ◽  
Betül Uysal ◽  
Marc Welzer ◽  
Jacqueline C Bahr ◽  
Nikolas Layer ◽  
...  

Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient viral transduction of cultures, enabling ‘high throughput’ fluorescence-mediated 3D reconstruction of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and demonstrate feasibility of long term live cell imaging of human cells in vitro. This model system has implications toward a broad spectrum of translational studies, regarding the validation of data obtained in non-human model systems, for therapeutic screening and genetic dissection of human CNS circuitry.


Sign in / Sign up

Export Citation Format

Share Document