Influence of Heating Temperature on Microstructure Characteristics of Directionally Solidified Ni-45Ti-5Al Alloy

2012 ◽  
Vol 581-582 ◽  
pp. 414-417
Author(s):  
Xiao Li Zhang ◽  
Ruo Lei Li ◽  
Chun Yan Yang ◽  
Xiao Fan Chen ◽  
Hu Zhang

The microstructure evolution of Ni-45Ti-5Al(atomic fraction, %) alloys prepared by directional solidification with liquid-metal-cooling at different temperatures of 1450°C, 1550°C and 1650°C was investigated. The results showed that the macrostructure in directional solidification growth region was obvious columnar grains. The microstructure was cellular growth structure, and composed of primary NiTi matrix and Ti2Ni precipitates. The preferred orientation of NiTi and Ti2Ni were respectively [100] and [111] direction. It was found that aluminum was dissolved in both NiTi and Ti2Ni phase. The Al content in the matrix was higher than it in the precipitates. As heating temperature increasing, the microstructure evolution was inconspicuous and the average cellular spacing was 30~50μm. The Ti2Ni volume percent was most when the heating temperature was 1550°C.

2018 ◽  
Vol 69 (5) ◽  
pp. 1055-1059 ◽  
Author(s):  
Mariana Ciurdas ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Alina Daniela Necsulescu ◽  
Cosmin Cotrut ◽  
...  

Aluminium bronzes are exhibiting good corrosion resistance in saline environments combined with high mechanical properties. Their corrosion resistance is obviously confered by the alloy chemical composition, but it can also be improved by heat treatment structural changes. In the present paper, five Cu-Al-Fe-Mn bronze samples were subjected to annealing heat treatments with furnace cooling, water quenching and water quenching followed by tempering at three different temperatures: 200, 400 and 550�C. The heating temperature on annealing and quenching was 900�C. The structure of the heat treated samples was studied by optical and scanning electron microscopy. Subsequently, the five samples were submitted to corrosion tests. The best resistance to galvanic corrosion was showed by the quenched sample, but it can be said that all samples are characterized by close values of open-circuit potentials and corrosion potentials. Concerning the susceptibility to other types of corrosion (selective leaching, pitting, crevice corrosion), the best corrosion resistant structure consists of a solid solution, g2 and k compounds, corresponding to the quenched and 550�C tempered sample.


2021 ◽  
Vol 40 (1) ◽  
pp. 12-22
Author(s):  
Yuetao Zhang ◽  
Tingbi Yuan ◽  
Yawei Shao ◽  
Xiao Wang

Abstract This article reports the microstructure evolution in TP347HFG austenitic steel during the aging process. The experiments were carried out at 700°C with different aging time from 500 to 3,650 h. The metallographic results show that the coherent twin and incoherent twin are existed in the original TP347HFG grains, while they gradually vanished with the increase of the aging time. After aging for 500 h, a lot of fine, dispersed particles precipitated from the matrix, but they disappeared after aging for 1,500 h. When the aging time extend to 3,650 h, the precipitates appeared apparently coarse in TP347HFG steel, which include the M23C6 and σ phase; besides, the micro-hardness of TP347HFG also changes during the aging, which was closely related to the effect of dispersion strengthening and solution strengthening. The results of the nonlinear ultrasonic measurement reveal that the β′ of TP347HFG steel was also changed with the aging time. It first increased at 0–500 h, then reduced later, and increased finally at 1,500–3,650 h. The variation of β′ in TP347HFG was influenced by a combined effect of the twin microstructure and the precipitate phase, which indicate that the nonlinear ultrasonic technique can be utilized to characterize the microstructure evolution in TP347HFG.


2008 ◽  
Vol 310 (14) ◽  
pp. 3366-3371 ◽  
Author(s):  
Hong Zhong ◽  
Shuangming Li ◽  
Haiyan Lü ◽  
Lin Liu ◽  
Guangrong Zou ◽  
...  

2016 ◽  
Vol 16 (4) ◽  
pp. 3457-3467 ◽  
Author(s):  
Jigang Wang ◽  
Ji Zhou ◽  
Wenhua Zhou ◽  
Jilong Shi ◽  
Lun Ma ◽  
...  

Chemical derived graphene oxide, an atomically thin sheet of graphite with two-dimensional construction, offers interesting physical, electronic, thermal, chemical, and mechanical properties that are currently being explored for advanced physics electronics, membranes, and composites. Herein, we study graphene quantum dots (GQD) with the blue photoluminescence under various parameters. The GQD samples were prepared at different temperatures, and the blue photoluminescence intensity of the solution improved radically as the heating temperatures increased. Concerning PL peak and intensity of the quantum dots, the results demonstrated dependence on time under heating, temperature of heating, and pH adjusted by the addition of sodium hydroxide. After hydrothermal synthesis routes, the functional groups of graphene oxide were altered the morphology showed the stacking configuration, and self-assembled structure of the graphene sheets with obvious wrinkles appeared at the edge structures. In addition, absorption, PL, and PLE spectra of the graphene quantum dots increase with different quantities of sodium hydroxide added. Finally, using GQD to target PNTIA cells was carried out successfully. High uptake efficiency and no cytotoxic effects indicate graphene quantum dots can be suitable for bio-targeting.


2014 ◽  
Vol 922 ◽  
pp. 469-474 ◽  
Author(s):  
Sho Manabe ◽  
Hiroshi Utsunomiya ◽  
Tetsuo Sakai ◽  
Ryo Matsumoto

Magnesium alloys show low deformability at low temperature because of hcp structure and inactiveness of basal slip. Manufacturing of thin sheet is difficult in industries. Some approaches, such as small-draft multi-pass rolling, intermediate annealing, isothermal rolling and high-speed rolling were proposed to overcome the deformability. However, small edge cracks are still formed on the sheet. In this study, rolling speed of 1000m/min was employed to warm-roll AZ31B magnesium alloy in a single pass at different temperatures. The edge cracks formed after the rolling were classified into three main groups: minor, regular and zigzag edge cracks. ‘Crack contact length’ are introduced to explain the morphology of edge cracks. The results show that the critical reduction for crack initiation depends on the pre-heating temperature. The spacing between edge cracks increases linearly with the crack contact length regardless of roll diameter, speed and reduction. It is suggested that this approach is useful to understand the formation mechanism of edge cracks and to evaluate the rollability of magnesium alloys.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 77-95
Author(s):  
Siqiao Yang ◽  
Haichao Li

Activated carbon, graphite, and GO/gelatin composite films were prepared by the blending method. The properties of composites were characterized by tensile strength (TS), elongation at break (EB), water vapour permeability (WVP), water-absorption ability, contact angle, scanning electron microscopy (SEM), and moisture at different temperatures. The properties of GO/gelatin composite films were better when each of three kinds of carbon materials were used as reinforcement phases and added into the matrix gelatin. The results showed that EB and TS of GO/gelatin composite films were both excellent. The moisture of GO/gelatin composite films was greater than the others. SEM micrographs showed that GO had better compatibility and dispersibility with gelatin than activated carbon and graphite. The water absorption of GO/gelatin composite films were low, at 15 °C and 25 °C, and the WVP was low at 35 °C. The WVP of GO/gelatin composite films was lower than the others at different temperatures. The contact angle of GO/gelatin composite films was larger than the others.


2005 ◽  
Vol 502 ◽  
pp. 517-0
Author(s):  
Kenji Murakami

Pure nickel powder was low pressure plasma sprayed onto a steel substrate held at different temperatures during spraying. The as-sprayed coatings consist of columnar grains whose axes are nearly perpendicular to the lamellae composing the coatings. As the coating temperature becomes higher, the length of the columnar grains increases and is longer than the thickness of the lamellae, indicating the growth of the grains across the lamellar interfaces during spraying. On the other hand, the coatings that were heat treated after spraying consist of coarse equiaxed grains. The coatings that experienced high temperatures during spraying or the heat treated coatings have large porosity and contain large globular pores. The hardness, apparent density and the tensile strength of the coating itself were the highest for the coating prepared at a low temperature and became low on heat treatment. The thermal conductivity in the direction perpendicular to the coating was the largest for the coating that consisted of long columnar grains.


2008 ◽  
Vol 57 (5) ◽  
pp. 3048
Author(s):  
Wang Kuang-Fei ◽  
Guo Jing-Jie ◽  
Mi Guo-Fa ◽  
Li Bang-Sheng ◽  
Fu Heng-Zhi

Sign in / Sign up

Export Citation Format

Share Document