Study on Performances of Cyanethyl Chitosan Fiber Prepared from [Asp]Cl Ionic Liquid

2012 ◽  
Vol 581-582 ◽  
pp. 698-701
Author(s):  
De Zeng Xu ◽  
Ting Zhao ◽  
Zhi Chao Liu ◽  
Lu Nan Bai ◽  
Jing Guo

Aspartic acid hydrochloride ionic liquid ([Asp]Cl) was successfully synthesized from aspartic acid powder and 36% hydrochloric acid. The derivative of chitosan cyanoethyl chitosan was prepared by acrylonitrile and alkali chitosan at room temperature. Structures of ionic liquid and cyanoethyl chitosan were characterized by FT-IR. Crystalline properties of cyanoethyl chitosan were characterized by XRD. Cyanoethyl chitosan was dissolved in [Asp]Cl ionic liquid aqueous solution and subjected to wet spinning. The mechanical properties of cyanoethyl chitosan fibers were tested by type LLY-06 electronic single fiber strength tester, and the surface morphology of fibers were observed by microscope. The results show that the maximum breaking strength of fiber was 2.212CN/dtex when the concentration of cyanoethyl chitosan was 6.5% relativing to 3% ionic liquid and the coagulating bath temperature was 30°C.

2011 ◽  
Vol 84 (3) ◽  
pp. 541-551 ◽  
Author(s):  
Huan Li ◽  
Jizhong Chen ◽  
Li Hua ◽  
Yunxiang Qiao ◽  
Yinyin Yu ◽  
...  

A new room-temperature ionic liquid (RTIL) consisting of a polyoxometalate (POM) anion and tri-block copolymer (P123)-functionalized imidazolium cation was synthesized and utilized as a halogen-free catalyst for esterification. The catalytic system was a homogeneous solution at the beginning of the reaction, but an emulsion formed during the course of the reaction, and a progressive phase separation of the catalyst occurred at 0 °C over the course of 3 h. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier transform/infrared spectroscopy (FT/IR) have been used to characterize the properties of the IL during the reaction. The new IL catalyst was found to be highly efficient in the esterification of various alcohols and can be recycled at least seven times.


2017 ◽  
Vol 88 (10) ◽  
pp. 1112-1124 ◽  
Author(s):  
Lele Sun ◽  
Changfa Xiao ◽  
Jian Zhao ◽  
Shulin An ◽  
Shichao Zhang

Ethylene-tetrafluoroethylene (ETFE) fibers were fabricated by a single-screw melt spinning machine at different drawing roll speed ratios and different drawing roll temperatures. Thermogravimetric analyzer, differential scanning calorimetry, X-ray diffraction (XRD), digital fiber sound velocimeter and single fiber strength testers were used to discuss the impacts of spinning processes on the structure and performance of ETFE fibers. The results indicated that four different fibers showed a similar melting temperature at around 257℃. XRD results revealed that the largest crystallinity of four ETFE fibers was 41.1%. As the drawing temperature increased, the crystallinity of ETFE fibers decreased and the grain size increased. The breaking strength of four as-spun ETFE fibers reached up to 1.12 cN/dtex. The minimum shrinkage of ETFE fibers at 200℃ was 7%, and it was only 1% at most below 150℃. The maximum creep strain of ETFE fibers was 6% when the loading capacity was 20% of the breaking strength at room temperature and ETFE fibers had a high recovery ratio of >90% after the load was removed. Moreover, ETFE fibers showed exceptional corrosion resistance and good performance of irradiation resistance.


2012 ◽  
Vol 9 (3) ◽  
pp. 1070-1076 ◽  
Author(s):  
M. Sundrarajan ◽  
M. Ramalakshmi

Room Temperature Ionic liquids are relatively more useful in the synthesis of inorganic nanostructured materials because of their unique properties. To synthesize the iron oxide nanoparticle in simple precipitation method, a novel ionic liquid was used as the greener medium and stabilizing agent namely “1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][TfO]”. The crystallinity, chemical structure, morphology and magnetic properties of the synthesized magnetite nanoparticles have been characterized by using X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), Scanning electron microscopy (SEM), Atomic force microscopy(AFM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The XRD study is divulge that the synthesized magnetite nanoparticles have inverse spinel face centered cubic structure. The FT-IR vibration peaks show the formation of Fe3O4nanoparticles, where the vibration peak for Fe-O is deliberately presence at 584 cm-1. The average particle size of the synthesized nanoparticles is found to be 35 nm. Homogeneously dispersed cubic shape with superstructure is found through SEM, AFM and TEM examination studies. The synthesized iron oxide nanoparticles have a high saturation magnetization value of 25 emu/g, which is very much useful for biomedical applications.


2016 ◽  
Vol 13 (3) ◽  
pp. 489-497
Author(s):  
Baghdad Science Journal

Mixing aluminum nitrate nonahydrate with urea produced room temperatures clear colorless ionic liquid with lowest freezing temperature at (1: 1.2) mole ratio respectively. Freezing point phase diagram was determined and density, viscosity and conductivity were measured at room temperature. It showed physical properties similar to other ionic liquids. FT-IR,UV-Vis, 1H NMR and 13C NMR were used to study the interaction between its species where - CO ??? Al- bond was suggested and basic ion [Al(NO3)4]? and acidic ions [Al(NO3)2. xU]+ were proposed. Water molecule believed to interact with both ions. Redox potential was determined to be about 2 Volt from – 0.6 to + 1.4 Volt with thermal stability up to 326 ?.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4443
Author(s):  
Magdalena Głąb ◽  
Anna Drabczyk ◽  
Sonia Kudłacik-Kramarczyk ◽  
Martin Duarte Guigou ◽  
Agnieszka Makara ◽  
...  

Recently, there has been great interest in the application of polysaccharides in the preparation of diverse biomaterials which result from their biocompatibility, biodegradability and biological activity. In this work, the investigations on chitosan/poly(aspartic acid)-based hydrogels modified with starch were described. Firstly, a series of hydrogel matrices was prepared and investigated to characterize their swelling properties, structure via FT-IR spectroscopy, elasticity and tensile strength using the Brookfield texture analyzer as well as their impact on simulated physiological liquids. Hydrogels consisting of chitosan and poly(aspartic acid) in a 2:1 volume ratio were elastic (9% elongation), did not degrade after 30-day incubation in simulated physiological liquids, exhibited a relative biocompatibility towards these liquids and similar swelling in each absorbed medium. This hydrogel matrix was modified with starch wherein two of its form were applied—a solution obtained at an elevated temperature and a suspension obtained at room temperature. Hydrogels modified with hot starch solution showed higher sorption that unmodified materials. This was probably due to the higher starch inclusion (i.e., a larger number of hydrophilic groups able to interact with the adsorbed liquid) when this polysaccharide was given in the form of a hot solution. Hydrogels modified with a cold starch suspension had visible heterogeneous inequalities on their surfaces and this modification led to the obtainment materials with unrepeatable structures which made the analysis of their properties difficult and may have led to misleading conclusions.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihai Contineanu ◽  
iulia Contineanu ◽  
Ana Neacsu ◽  
Stefan Perisanu

The radiolysis of the isomers L-, D- and DL- of the aspartic acid, in solid polycrystalline state, was investigated at room temperature. The analysis of their ESR spectra indicated the formation of at least two radicalic entities. The radical, identified as R3, resulting from the deamination of the acid, exhibits the highest concentration and thermal resistance. Possible mechanisms of formation of three radical species are suggested, based also on literature data. The kinetics of the disappearance of radical R3 indicated a complex mechanism. Three possible variants were suggested for this mechanism.


2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.


2020 ◽  
Vol 17 ◽  
Author(s):  
Saeid Azimi ◽  
Niloofar Mohamadighader

Abstract: A new solid catalyst was synthesized from an ionic liquid and heterogenised by changing anion reaction. The new heterogeneous acidic catalyst was characterized by SEM images, EDS analysis, AFM images, Ft-IR, HNMR, 13CNMR and Mass Spectroscopy. It was applied to synthesis of tri-arylmethanes throughout one-pot tri-component reactions among aromatic aldehydes, N,N-dimethylaniline and other carbonic nucleophiles such as anisole and indole. Hence, synthesis of convenient and inexpensive micro-heterogeneous catalyst was introduced, the efficiency of which was confirmed. Also, various useful products were synthesized throughout this simple and clean procedure.


Sign in / Sign up

Export Citation Format

Share Document