Preparation of Activated Carbon from Coke Powder by KOH Activation

2012 ◽  
Vol 616-618 ◽  
pp. 1894-1897
Author(s):  
Chun Jie Yang

With the enhancement of environmental awareness and the development of coking technology, large domestic coking plant With the enhancement of environmental awareness and the development of coking technology, large domestic coking plant With the enhancement of environmental awareness and the development of coking technology, large domestic coking plant will use CDQ technology to deal with Coke. So a great number of coke powder will be produced in coking enterprises every day. This paper use coke power, the waste of coking enterprises, as raw material to produce activated carbon with good adsorption property by chemical activation. The surface chemical composition and surface area of the activated carbon were investigated. The effects of activation conditions on the characteristics of the activation carbons were studied.As a result, activated carbon with an iodine adsorption capacity of 1020mg/g, a methylene blue adsorption capacity of 365 mg/g and a specific surface area of 1600 m2/g was obtained. These adsorption capacities were almost the same as ordinary activated carbon on the market.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


2014 ◽  
Vol 14 (1) ◽  
pp. 82-98
Author(s):  
Andy Mizwar

Limbah rotan dari industri kerajinan dan mebel berpotensi untuk dijadikan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan holoselulosa dan kadar karbon yang tinggi. Penelitian ini bertujuan untuk menganalisis efektifitas dari aktivasi kimia menggunakan larutan natrium klorida (NaCl) yang dilanjutkan dengan aktivasi fisik dalam pembuatan karbon aktif berbahan dasar  limbah serutan rotan. Pembuatan karbon aktif diawali dengan proses karbonisasi pada suhu 250°C selama 1 jam. Selanjutnya aktivasi kimia menggunakan larutan NaCl dengan variasi konsentrasi 10%, 15% dan 20% serta waktu perendaman selama 10, 15 dan 20 jam. Aktivasi fisik dilakukan dengan pembakaran pada suhu 700°C selama 30 menit. Analisis karakteristik fisik-kimia karbon aktif mengacu pada SNI 06-3730-95, meliputi kadar air, fixed carbon, dan iodine number, sedangkan perhitungan luas permukaan spesifik karbon aktif dilakukan dengan Metode Sears. Hasil penelitian ini menunjukkan bahwa kondisi optimum aktivasi kimia terjadi pada konsentrasi NaCl 10% dan lama perendaman 10 jam dengan hasil analisis kadar air 2.90%, fixed carbon 72.70%, iodine number 994.59 mg/g dan luas permukaan 1587.67 m²/g. Peningkatan fixed carbon, iodine number dan luas permukaan karbon aktif berbanding terbalik dengan peningkatan konsentrasi NaCl dan lama waktu perendaman, sedangkan peningkatan kadar air pada karbon aktif berlaku sebaliknya. Rattan waste from handicraft and furniture industry could potentially be used as raw material of activated carbon due to high content of holoselulosa and carbon. This paper investigates the effectiveness of chemical activation using sodium chloride (NaCl) followed by physical activation in the making of activated carbon-based on rattan shavings waste. Preparation of the activated carbon began with the carbonization process at 250°C for 1 hour. Furthermore chemical activation using a variation of NaCl concentrations 10%, 15% and 20% as well as the time of immersion 10, 15 and 20 hours. Physical activation was done by burning at 700°C for 30 minutes. Analysis of the physical and chemical characteristics of the activated carbon was referred to the SNI 06-3730-95, including of moisture content, fixed carbon and iodine number, while the calculation of the specific surface area was done by the Sears’s method. The results of this study showed that the optimum conditions of chemical activation occurred in impregnation by NaCl 10% for 10 hours. The water content, fixed carbon, iodine number and surface area of activated carbon was 2.90%, 72.70%, 994.59 mg/g and 1587.67 m²/g  respectively. The increase values of fixed carbon, iodine number, and surface area was inversely proportional to the increase of NaCl concentration and the length of impregnation time, while the increase of water content applied vice versa.


2019 ◽  
Vol 1 (1) ◽  
pp. 54-60
Author(s):  
Awitdrus Awitdrus

Activated carbon was prepared from Terminalia catappa shells using microwave asissted KOH activation. The ratio of mass percentages of Terminalia catappa and KOH were 4:1, 4:2, and 4:3. Terminalia catappa based activated carbon was prepared by KOH activation at the room temperature for 24 hours and followed by microwave irradiation at the out put power of 630 Watt for 20 minutes. The physical properties of activated carbon i.e. surface morphology, micro structure, and BET surface area were characterized by electron scanning microscope, X-ray diffraction and N2 adsorption-desorption isotherm at 77K, respectively. The highest BET surface area was 312 m2/g with adsorption of activated carbon towards methylene blue by 84.4 mg/g. The BET surface area was directly correlated with the stack height (Lc) of the activated carbon.


2018 ◽  
Vol 3 (11) ◽  
pp. 6-11 ◽  
Author(s):  
Funda Ateş ◽  
Öznur Özcan

Activated carbons were prepared from poplar sawdust by chemical activation using ZnCl2, H3PO4 or KOH. The influence of activating agents, carbonization temperatures ranging from 500 ºC to 800 ºC, and mass ratio of chemical agent to precursor (1:1 and 2:1) on the porosity of activated carbons were studied. The properties of the carbons were characterized by adsorption/desorption of nitrogen to determine the BET areas, scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). It was determined that the surface morphology and textural characteristics of activated carbons vary depending on the carbonization temperature or chemical agent. Maximum surface areas were obtained at carbonization temperatures of 500, 700 and 800 ºC for H3PO4, KOH and ZnCl2 activation, respectively. The activated carbons prepared using ZnCl2 and H3PO4 activation had a higher BET surface area (nearly 1100 m2/g) than that of the KOH activation (761 m2/g). This study also presents a comparison of mechanisms of activating agents and carbonization temperature. As a result of the experimental studies, positive results were obtained, and the production of activated carbon with a high surface area was conducted. 


2008 ◽  
Vol 5 (1) ◽  
pp. 47 ◽  
Author(s):  
O. Houache ◽  
R. Al-Maamari ◽  
B. Al-Rashidi ◽  
B. Jibril

Activated carbon adsorbent was prepared using Omani date palm tree stem as a precursor. Precursor samples were subjected to thermal treatment (at 400, 500 and 600 oC) before or after impregnation with either H3PO4 (85 wt %) or KOH (3 wt %). The activated carbon obtained was characterized by BET (surface area and porosity), Gas Pycnometry (true density) and SEM (texture). Sample subjected to carbonization, without chemical activation, exhibited low surface areas ~ 1.0 m2/g at 400 and 500 oC and 124 m2/g at 600 oC. Further treatment of such samples with either the acid or the base did not show improvement in surface area or other properties. Impregnations of the precursor with acid before carbonization significantly improved the surface area to as high as 1,100 m2/g at a carbonization temperature of 500 oC. Thus, activated carbon with a moderate surface area could be produced from date palm stem using low carbonization temperature. 


2018 ◽  
Vol 37 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Song Cheng ◽  
Libo Zhang ◽  
Shengzhou Zhang ◽  
Hongying Xia ◽  
Jinhui Peng

AbstractThe spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer–Emmett–Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.


2021 ◽  
Vol 1162 ◽  
pp. 57-64
Author(s):  
Awitdrus Awitdrus ◽  
Meylia Susiana Dewi Putri ◽  
Romi Fadli Syahputra ◽  
Iwantono Iwantono ◽  
Saktioto Saktioto

The objectives of this study are to investigate the influence of concentration variation of potassium hydroxide (KOH) and to remove a heavy metal in liquid waste of the activated carbon. The raw material of activated carbon was obtained from pineapple crown waste. Pineapple crowns pre-carbonized at 180 oC for 1 hour. Chemical activation was carried out using KOH with concentration 2M, 3M, and 4M for 20 hours at 30 oC and temperature 60 oC for 2 hours. Microwave irradiation was conducted at 630 Watt of output power for 15 minutes. The physical properties of activated carbon were characterized using scanning electron microscopy to determine surface morphology of activated carbon, X-ray diffraction to calculated microstructure (i.e. interlayer spacing and microcrystalline dimension) using Bragg’s and Scherer’s equations, specific surface area was calculated from N2 adsorption-desorption isotherm using BET equation, Fourier-transform infrared (FTIR) identify the functional groups of activated carbon, and heavy metals absorption was tested using atomic adsorption spectrophotometric. The highest surface area of activated carbon is 300,901 m2/g for activated carbon with concentration 2M corresponding to the highest stack height (Lc) of activated carbon of 10,470 nm. The carbon chain structure shows the functional groups C-H, C≡C, O-H, C-OH, and CH2 at wavenumbers of 2889,49 cm-1, 2360,97 cm-1, 2339,97 cm-1, and 998,21 cm-1, respectively.


2016 ◽  
Vol 835 ◽  
pp. 289-298 ◽  
Author(s):  
M.I.M. Nayai ◽  
Khudzir Ismail ◽  
Mohd Azlan Mohd Ishak ◽  
N. Zaharudin ◽  
Wan Izhan Nawawi

Coconut shell-based activated carbon (CSAc) was prepared by chemical activation method using microwave-induced KOH technique. The activation process was successfully carried out with varying microwave power ranging from 100 to 1000 W and impregnation ratio of 1.0 to 3.0. The surface area, pore sizes, surface morphology and specific capacitance of the produced activated carbon were analyzed by using an automatic quantachrome instrument (Autosorb1C) volumetric sorption analyzer, scanning electron microscope (SEM) and automatic battery cycler. The optimum activation power and impregnation ratio were found at 600 W and 1.5, respectively. The resulted product, C3 has maximum surface area and specific capacitance value of 1768.8 m2 g-1 and 156.33 F g-1 respectively, with carbon yield of 58 %.


2011 ◽  
Vol 110-116 ◽  
pp. 2124-2130 ◽  
Author(s):  
Abdul Rahim Yacob ◽  
Hassan M. Al Swaidan

High surface area activated carbon has always fascinated researchers for its application as adsorbent, for water purification, medical and industrial. Date is the major export of Saudi Arabia, while tons of date foliar and fronds are troublesome and yet to be disposed. Transforming this waste into usable activated carbon can be a good idea for recycling, sustainable and green chemistry. In this study, date tree frond is selected to prepare activated carbon, while the effect of phosphoric acid in chemical activation is studied. Using thermogravimetry analysis, it was found that 400oC was the best temperature to convert date frond to carbon. This is supported by FTIR spectroscopy. Various concentration of phosphoric acid is used to optimize the product high surface area carbon obtained and it was found the best is at 60% phosphoric acid with the highest surface area of 1139 m2g-1. This result is also supported by FTIR spectroscopy, which indicates the similarities between commercial carbon and the carbon prepared. FESEM pictographs show chemical activation using phosphoric acid can easily open up pores and cavity of the prepared activated carbon the get the high surface area. It is thus suggested that for mass production of high surface area carbon, date palm frond is used as the source of raw material, due to its abundance and availability comes from the pruning process on the date palm tree, while chemically activated to get the high surface area.


2018 ◽  
Vol 67 ◽  
pp. 02018 ◽  
Author(s):  
Yuliusman ◽  
Nasruddin ◽  
H I Naf’an ◽  
J Sinto ◽  
Y W Nugroho

Activated carbon used as natural gas storage in adsorbed natural gas technology due to physical adsorption properties. Pineapple crown was used as raw material for activated carbon by reason of high lignocellulose content. The purpose of this study is to produce high surface area of activated carbon with high carbon composition (up to 80% weight). Activated carbon were prepared through chemical activation using KOH with various weight ratio and physical activation using N2 with 150 ml/min flowrate. Carbonization of pineapple crown is done at 350°C followed by chemical activation with KOH activator and physical activation. The result of iod number indicate the 1:1 weight KOH ratio gave the highest iod number 1337 mg/mg and 1190.799 m2/g surface area achieved by chemical-physical activation.


Sign in / Sign up

Export Citation Format

Share Document