Interface Strength and Structure of Explosive Welding Sainless Steel-Aluminum Clad

2009 ◽  
Vol 79-82 ◽  
pp. 1803-1806 ◽  
Author(s):  
Hong Wei Liu ◽  
Jing Bo Yu

The interface is the area where two type of materials are connected, the strength and property of interface are important for the application of the clad. In this paper, interfacial strength and fracture properties of stainless steel-aluminum clad are analyzed with the methods of interfacial shear test and four point bending test, and the interfacial crack and the interfacial fracture structure are analyzed with SEM. The results show that the bonding of stainless steel and aluminum is successfully realized by explosive welding, the interfacial shear strength reach 70.90MPa, and the interfacial energy release rate is 1.725 MPa•m, the thickness of transition layer is about 10μm at the interface, the interfacial fracture happen and extend in the transition layer along the interface and the interface fracture structure is inclined to brittle fracture.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1573
Author(s):  
Qin Wang ◽  
Peikang Bai ◽  
Zhanyong Zhao

TiB2/316L stainless steel composites were prepared by selective laser melting (SLM), and the adhesion work, interface energy and electronic structure of TiB2/γ-Fe interface in TiB2/316L stainless steel composites were investigated to explore the heterogeneous nucleation potential of γ-Fe grains on TiB2 particles using first principles. Six interface models composed of three different stacking positions and two different terminations were established. The B-terminated-top 2 site interface (“B-top 2”) was the most stable because of the largest adhesion work, smallest interfacial distances, and smallest interfacial energy. The difference charge density and partial density of states indicated that a large number of strong Fe-B covalent bonds were formed near the “B-top 2” interface, which increased the stability of interface. Fracture analysis revealed that the bonding strength of the “B-top 2” interface was higher than that of the Fe matrix, and it was difficult to fracture at the interface. The interface energy at the Ti-poor position in the “B-top 2” interface model was smaller than that of the γ-Fe/Fe melt, indicating that TiB2 had strong heterogeneous nucleation potency for γ-Fe.


2014 ◽  
Vol 687-691 ◽  
pp. 4214-4217
Author(s):  
Xiao Ding ◽  
Zhi Ling Wang

MIG welding overlaid austenitic stainless steel on low alloy Q345B. The overlay cladding comprises a transition layer and corrosion resistant layer. Overlaying specimens of transition layer with different thicknesses were prepared. The mechanical properties of joints were tested by micro-hardness, bending test and other methods. The results showed that the mechanical properties of specimen with ER309L welding wire as transition layer did not have splitting phenomena after being bended. There were no cracks. However, the specimen without transition layer had small crack or tiny cracks. When the transition layer thickness is changed, the performance of overlay cladding is essentially unchanged. The organizations of overlay cladding in four groups of specimens are similar, which are composed of austenite and ferrite, and ferrite was mostly distributed in strips and blocks.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 969 ◽  
Author(s):  
Henryk Paul ◽  
Robert Chulist ◽  
Izabela Mania

A systematic study of explosively welded tantalum and 304 L stainless steel clad with M1E copper interlayer was carried out to characterize the microstructure and mechanical properties of interfacial layers. Microstructures were examined using transmission and scanning (SEM) electron microscopy, whereas mechanical properties were evaluated using microhardness measurements and a bending test. The macroscale analyses showed that both interfaces between joined sheets were deformed to a wave-shape with solidified melt zones located preferentially at the crest of the wave and in the wave vortexes. The microscopic analyses showed that the solidified melt zones are composed of nano-/micro-crystalline phases of different chemical composition, incorporating elements from the joined sheets. SEM/electron backscattered diffraction (EBSD) measurements revealed the microstructure of layers of parent sheets that undergo severe plastic deformation causing refinement of the initial grains. It has been established that severely deformed areas can undergo recovery and recrystallization already during clad processing. This leads to the formation of new stress-free grains. The microhardness of welded sheets increases significantly as the joining interface is approaching excluding the volumes directly adhering to large melted zones, where a noticeable drop of microhardness, due to recrystallization, is observed. On lateral bending the integrity of the all clad components is conserved.


Author(s):  
Gefu Ji ◽  
Zhenyu Ouyang ◽  
Guoqiang Li ◽  
Wei Xu ◽  
Dwayne Jerro ◽  
...  

Interfacial toughness and interfacial strength, as two critical parameters in an interfacial traction-separation law, have important effect on the fracture behaviors of bonded joints. In this work, the global and local tests are employed to investigate the effect of adhesive thickness on interfacial energy release rate, interfacial strength, and shapes of the interfacial traction-separation laws. Basically, the measured laws in this work reflect the equivalent and lumped interfacial fracture behaviors which include the cohesive fracture, damage and plasticity. The experimentally determined interfacial traction-separation laws may provide valuable baseline data for the parameter calibrations in numerical models. The current experimental results may also facilitate the understanding of adhesive thickness-dependent interface fracture of bonded joints.


2021 ◽  
Vol 55 ◽  
pp. 1114-1121
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala ◽  
Stanislav Seitl

2013 ◽  
Vol 746 ◽  
pp. 394-399
Author(s):  
Niwat Anuwongnukroh ◽  
Yosdhorn Chuankrerkkul ◽  
Surachai Dechkunakorn ◽  
Pornkiat Churnjitapirom ◽  
Theeralaksna Suddhasthira

The archwire is generally used in fixed appliances for orthodontic treatment to correct dental malocclusion. However, it is interesting to know whether general purpose stainless steel wire could replace commercial orthodontic archwire in orthodontic practice for economic reasons. The purpose of this study was to determine the bending properties of general purpose stainless steel wire compared with commercial orthodontic stainless steel wires after forming as an archwire for orthodontic use. The samples used in this study were 90 general purpose and 45 commercial (Highland) round stainless steel wires in 0.016, 0.018, and 0.020 sizes (30 general purpose and 15 commercial wires for each size). All 15 general purpose stainless steel wires with different sizes were formed into orthodontic archwire with a Universal Testing Machine. All samples were tested (three-point bending test) for mechanical properties. The results showed no significant difference between general purpose and commercial orthodontic wires in size 0.016 for 0.1 mm offset bending force, 0.2% yield strength, and springback. Although many mechanical properties of general purpose wires differed from commercial wires, their values conformed to other previous studies within the range of clinical acceptance. In conclusion, orthodontic formed general purpose round stainless steel wires had statistically different (p <0.05) mechanical properties from commercial orthodontic stainless steel wires (Highland) but the mechanical properties were acceptable to use in orthodontic treatment.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2225 ◽  
Author(s):  
Ikramullah ◽  
Samsul Rizal ◽  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
H.P.S. Abdul Khalil ◽  
...  

The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.


Author(s):  
Mulayam Kumar ◽  
Dr. Simant ◽  
Vijay Gupta

The present work has been carried out to study the effect of the varying the load at different materials (Aluminium Alloy 7075-T6, stainless steel 305 and Structural Steel 345w) on deflection. The simply supported beam has been subjected to varying load 5000N - 10000N and cantilever beam has been subjected to varying load 500N-1000N. The result obtained is in form of Directional Deflection and Equivalent Stresses. This analysis is done by the ANSYS Workbench 15.0 software under the static structural analysis further this result has been optimized using TAGUCHI METHOD using MINITAB17.


2007 ◽  
Vol 348-349 ◽  
pp. 853-856
Author(s):  
Shan Suo Zheng ◽  
Lei Li ◽  
Guo Zhuan Deng ◽  
Liang Zhang

Steel reinforced high strength and high performance concrete (SRHSHPC) specimens were experimented to study the mechanical behaviors between steel and concrete interface. In experiment, interfacial bond softening process was observed, which can be explained in terms of damage along the interface, leading to progressive reduction of shear transfer capability between steel and high strength and high performance concrete (HSHPC). In this paper, bond softening process along the interface is considered in the analysis of crack-induced debonding. Interfacial bond-slip mechanism between steel and HSHPC is studied in detail based on fracture mechanics. With the help of acoustic emissions technology, the crack propagation in the interlayer was observed, thus the interfacial crack propagation and fracture model is set up. Under the assumption that the interlayer is weak concrete compared with concrete matrix, the stress field as well as displacement field around the crack tip is deduced. The characteristics of interfacial fracture process are discussed and a model for interfacial fracture process zone is built up. With this model, the size of fracture process zone can be derived. At last, the influence of the fracture process zone on interfacial fracture toughness is determined using critical fracture toughness. All these may contribute to improvement of theory for SRHSHPC composite structure.


Sign in / Sign up

Export Citation Format

Share Document