The Role of Beclin1 Gene in Autophagy and Apoptosis Induced by Ionizing Radiation in MCF - 7 Cells

2013 ◽  
Vol 790 ◽  
pp. 587-589
Author(s):  
Ya Li Qi ◽  
Yan Jun Liu ◽  
Da Li Zhao

Objective To discuss the role of Beclin1 gene in autophagy and apoptosis induced by ionizing radiation in MCF - 7 cells. Methods MTT assay was used to detect the influence of cells proliferation when beclin-1 gene was over expression and interference. Flow cytometric analysis detected the change of MCF - 7 cells apoptosis after irradiating by X-ray. Western blot method detected total protein changes of beclin - 1. Results Beclin-1 gene was interferred partly, the amount of protein expression of MCF-7-beclin1Ri cells reached to the lowest at 4 h, rose at 8 h, got to the most at 16 h and decreased at 32 h, but still held at higher level;Beclin-1 gene over-expression, the amount of protein expression increased gradually with the extension of time, and got to peak at 32 h. Conclusions Ionizing radiation can stimulate beclin-1 and exist relations of dose - effects in MCF-7 cells.

2021 ◽  
Vol 22 (6) ◽  
pp. 3239
Author(s):  
 Mami Sato ◽  
Rieko Arakaki ◽  
Hiroaki Tawara ◽  
Takaaki Tsunematsu ◽  
Naozumi Ishimaru

The relationship between autoimmunity and changes in intestinal microbiota is not yet fully understood. In this study, the role of intestinal microbiota in the onset and progression of autoimmune lesions in non-obese diabetic (NOD) mice was evaluated by administering antibiotics to alter their intestinal microenvironment. Flow cytometric analysis of spleen cells showed that antibiotic administration did not change the proportion or number of T and B cells in NOD mice, and pathological analysis demonstrated that autoimmune lesions in the salivary glands and in the pancreas were also not affected by antibiotic administration. These results suggest that the onset and progression of autoimmunity may be independent of enteral microbiota changes. Our findings may be useful for determining the appropriate use of antibiotics in patients with autoimmune diseases who are prescribed drugs to maintain systemic immune function.


2020 ◽  
Vol 10 (6) ◽  
pp. 789-797
Author(s):  
Zhaoyan Shi ◽  
Weidong Xiao ◽  
Meifang Hu

Breast cancer (BC) is one of the most prevalent and mortal malignancies in women worldwide, and tamoxifen is the mainstay treatment of breast cancer and the development of resistance represents a major obstacle for a cure. Long non-coding RNAs (LncRNAs) LINC00261 have been identified to serve a key role in the development of several tumors. However, the role of LINC00261 in breast cancer and chemotherapy resistance remains largely unknown. To investigate the role of LINC00261 in BC cells, LINC00261 was upregulated in MCF-7-TAM cells by transfecting with LINC00261 plasmid (pcDNA-LINCC00261). Subsequently, cell viability and drug sensitivity were measured using the CCK-8 assay. Reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was performed to detect the level of LINC00261 in BC cells. Cell migration, invasion, and apoptosis were detected by Transwell, Scratch Test and Flow cytometry, respectively. Additionally, the associated protein expression was detected using Western blot. The results demonstrated that LINC00261 was significantly down-regulated in BC cells, especially in MCF-7-TAM cells. Overexpression of LINC00261 inhibited cell proliferation, migration, and invasion in MCF-7-TAM cells. Further, an abundant of LINC00261 sensitized breast cancer cells to tamoxifen and reduced tamoxifen-induced apoptosis in MCF-7-TAM cells. Finally, LINC00261 significantly regulated the protein expression of drug-resistant genes and the protein expression related to tumor metastasis and cell apoptosis. Therefore, this study revealed that LINC00261 induces chemosensitization to tamoxifen in human breast cancer, it may be a useful biomarker and potential therapeutic target.


2017 ◽  
Vol 44 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Fang Yang ◽  
Lizhi Lv ◽  
Kun Zhang ◽  
Qiucheng Cai ◽  
Jianyong Liu ◽  
...  

Background/Aims: Increasing evidence has indicated that Forkhead box protein C2 (FOXC2) plays an important role in carcinogenesis. However, the expression and the role of FOXC2 in hepatocellular carcinoma (HCC) have not been extensively studied. Methods: FOXC2 expression was analyzed by quantitative real-time polymerase chain reaction, Western blot analysis and immunohistochemistry in HCC tissue and cells. The relationship between FOXC2 expression and patient clinical significance and survival were assessed by Pearson’s correlation and Kaplan-Meier analysis, respectively. Cell proliferation assays, colony formation assays, flow cytometric analysis and Transwell assays were employed to measure the effects of FOXC2 on HCC cells in vitro. Results: The expression of FOXC2 was increased in HCC tissue, and high FOXC2 expression was associated with worse patient survival. Knockdown of FOXC2 inhibited HCC cell growth, migration, and invasion in vitro, as well as tumor growth. Furthermore, we found that activation of AKT-mediated MMP-2 and MMP-9 was involved in FOXC2 promoting an aggressive phenotype. Conclusions: Taken together, these findings demonstrate that FOXC2 is upregulated in HCC tissue and is associated with tumor size, vascular invasion and advanced TNM stage. Further investigation suggested that FOXC2 may play a vital role in promoting proliferation and invasion in HCC and serves as a novel therapeutic target in HCC.


1991 ◽  
Author(s):  
Ronald H. Jensen ◽  
William L. Bigbee ◽  
Richard G. Langlois ◽  
Stephen G. Grant ◽  
Pavel G. Pleshanov ◽  
...  

2020 ◽  
Author(s):  
Jihui Chen ◽  
Zhipeng Wang ◽  
Shouhong Gao ◽  
Kejin Wu ◽  
Fang Bai ◽  
...  

Abstract AimPemetrexed, a new generation antifolate drug, is approved for the treatment for locally advanced or metastatic breast cancer, but factors affecting the efficacy and resistance of it have yet to be fully explicit. ATP-binding cassette transporters have been reported as prognostic and adverse effects predictors of many xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and may contribute to treatment regimen optimization for breast cancer.MethodsFirstly, the expression of ABC transporters family members was measured in cell lines, thereafter examined the potential role of ABC transporter in conferring resistance to pemetrexed in primary cancer cell lines isolated from 34 breast cancer patients, and then the role of ABCC5 in mediating transport of pemetrexed and apoptosis pathway in MCF-7 cell lines was assessed. Finally, the functions of ABCC5 on therapeutic effect of pemetrexed was evaluated in breast cancer bearing mice.ResultsThe expressions of ABCC2, ABCC4, ABCC5 and ABCG2 were significantly increased in pan-resistance cell lines, and the ABCC5, the most obvious one, was 5.21 times higher than that of the control group. The expression of ABCC5 was inversely correlated with sensitivity (IC50) of pemetrexed (r = 0.741; p<0.010) in breast cancer cell lines from 34 patients. Further, we found expression of ABCC5 influenced the efflux and cytotoxicity of pemetrexed in MCF-7 cell line, and the IC50 were 0.06 μg/ml and 0.20 μg/ml in ABCC5 knock-down and over-expression cells, respectively. In vivo study, we found ABCC5 affected sensitivity of pemetrexed in breast cancer bearing mice, and the tumor volume was much larger in ABCC5 over-expression group than that in control group (2.7 folds vs 1.2 folds).ConclusionsOur results indicated ABCC5 was associated with pemetrexed sensitivity and resistance in vitro and in vivo, and may be a biomarker for regimen optimization of pemetrexed in breast cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruichuang Yang ◽  
Jianxia Wen ◽  
Tao Yang ◽  
Chunmei Dai ◽  
Yanling Zhao

Aims. In this study, the pharmacological effects and potential molecular mechanisms of evodiamine in treating gastric cancer (GC) were investigated. Methods. GC cells lines of AGS and BGC-823 were treated with evodiamine at various concentrations for different times (24, 48, and 72 h). Inhibition of the proliferation of AGS and BGC-823 cells was assessed using a CCK-8 assay. The morphology of gastric cancer cells was detected by high-content screening (HCS). The apoptosis-inducing effect of evodiamine on AGS and BGC-823 cells was detected by flow cytometric analysis. Cell migration and invasion were detected by Transwell assay. The relative mRNA and protein expression levels of PTEN-mediated EGF/PI3K signaling pathways were investigated via RT-qPCR or western blotting, respectively. Results. Evodiamine substantially inhibited AGS and BGC-823 cells proliferation in a dose- and time-dependent manner. Flow cytometric analysis revealed that evodiamine could induce apoptosis of AGS and BGC-823 cells in a dose-dependent manner. In addition, evodiamine inhibited AGS and BGC-823 cell migration and invasion. Mechanistically, the results demonstrated that evodiamine promoted the relative mRNA and protein expression of PTEN and decreased expression of EGF, EGFR, PI3K, AKT, p-AKT, and mTOR. Most importantly, evodiamine could effectively increase the mRNA and protein expression of PTEN and decrease the protein expression of EGF/PI3K pathway, indicating that evodiamine downregulated EGF/PI3K through the activation of PTEN pathway. Conclusion. Evodiamine inhibited the directional migration and invasion of GC cells by inhibiting PTEN-mediated EGF/PI3K signaling pathway. These findings revealed that evodiamine might serve as a potential candidate for the treatment or prevention of GC.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4771-4771
Author(s):  
Magali Le Garff-Tavernier ◽  
Michel Ticchioni ◽  
Rémi Letestu ◽  
Martine Brissard ◽  
Frédéric Davi ◽  
...  

Abstract Background : Expression of ZAP-70 protein has been shown to be correlated with mutational status of immunoglobulin heavy-chain variable region (IgVH) genes, a major prognostic factor in CLL. We investigated whether the detection of ZAP-70 protein by flow cytometric analysis using unconjugated and conjugated monoclonal antibodies (mAbs) could be applied securely in the workup of patients with CLL. Methods: Flow cytometric analysis of ZAP-70 protein was performed using the method described by Crespo et al (N Engl J Med2003;348:1764) with minor modifications. Both fresh and cryopreserved mononuclear cells from CLL patients and healthy donors were fixed and permeabilized using Fix and Perm kit (Caltag Laboratories), incubated with anti-ZAP-70 mAb (clone 2F3.2, Upstate Biotechnology) and then revealed with goat antimouse FITC mAb (Immunotech). Finally cells were incubated with CD3-APC, CD56-APC and CD19-PC5. We also tested 3 mAbs conjugated to various fluorochromes: 2F3.2-FITC (Upstate), 1E7.2-PE (eBioscience), 1E7.2-PE or -Alexa 488 (Caltag). ZAP-70 protein detection in B-cells was expressed either as a percentage of its expression in the T and NK-cells or as a ratio (R) of T-cell mean cell fluorescence (MCF) to B-cell MCF. Western blotting of protein lysates from purified B-cells was carried out to control results obtained by cytometry in 55 samples. Mutational status was defined using a cutoff of 98%. Results: In 13 healthy donors, the mean percentage of ZAP-70 protein expression obtained by flow cytometry with unconjugated mAb (clone 2F3.2) was 4.69% ± 1.93 [range 2–9%] and the R ratio was 6.64 ± 1.54 and &gt; 4.8. In 83 B-CLL samples, ZAP-70 expression was determined using the same method and compared to IgVH mutational status. Results in table below show a 75% concordance between gene mutations and ZAP-70 expression when considering a percentage of positive B-cells &gt; 20%. A better concordance (81%) is obtained with a threshold T-cell MCF/ B-cell MCF at 4 determined by Youden’s index. To note the high concordance (90%) between unmutated status and ZAP-70 + expression (19/21). Comparison with at least 1 of the 3 conjugated mAbs has been performed for 63 samples, with discordant results in our laboratories. 62 mutated IgVH samples 21 unmutated IgVH samples ZAP-70 B-Cells + ≤ 20 % : 43 &gt; 20% : 19 T-cell MCF/B-cell MCF ≥ 4 : 48 &lt; 4 : 19 Conclusions: Our data document the concordance between IgVH gene mutational status and ZAP-70 protein expression measured by flow cytometry, particularly in ZAP-70 negative samples. We found that the indirect method of labelling with unconjugated anti-ZAP-70 mAb remains until now, in our hands, the gold standard method compared to the available dyes conjugate mAbs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 869-869
Author(s):  
Melanie Märklin ◽  
Jonas S. Heitmann ◽  
B. Sc. ◽  
David Worbs ◽  
B. Sc. ◽  
...  

Abstract NFAT is a family of highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by calcineurin, NFAT proteins translocate to the nucleus where they orchestrate developmental and activation programs in diverse cell types. CLL is a clonal disorder of mature B cells characterized by the expression of CD19, CD23 and CD5. With respect to prognosis, it constitutes a heterogeneous disease with some patients exhibiting an indolent course for many years and others progressing rapidly and requiring early treatment. Expression of CD38 and ZAP70 define a subgroup of patients with enhanced responsiveness to stimulation of the B cell receptor (BCR) complex and more aggessive disease. In contrast, another subset of CLL patients with more indolent course is characterized by an anergic B cell phenotype refering to B cell unresponsiveness to IgM ligation and essential lack of phosphotyrosine induction and calcium flux. Here, we analyzed the role of NFAT2 in the pathogenesis of B-CLL and in anergy induction in CLL cells. For this purpose, we generated mice with a conditional NFAT2 knock out allele (NFAT2fl/fl). In order to achieve NFAT2 deletion limited to the B cell lineage, we bred NFAT2fl/fl mice to CD19-Cre mice. To investigate the role of NFAT2 in the pathogenesis of CLL we made use of the Eµ-TCL1 transgenic mouse model in which the TCL1 oncogene is expressed under the control of the Eµ enhancer. TCL1 transgenic mice develop a human-like CLL at the age of approximately 14 wks to which the animals eventually succumb at an average age of 10 months. To analyze the role of NFAT2 in CLL, we generated mice (n=10) whose B cells exhibited a specific deletion of this transcription factor in addition to their transgenic expression of the TCL1 oncogene (TCL1 CD19-Cre NFAT2fl/fl). TCL1 transgenic mice without an NFAT2 deletion served as controls (n=10). To identify novel NFAT2 target genes in CLL cells, we performed a comparative gene expression analysis on CLL cells with intact NFAT2 expression and on CLL cells with NFAT2 deletion using affymetrix microarrays. Mice with NFAT2 knock out exhibited a significantly more aggressive disease course with accelerated accumulation of CD5+CD19+ CLL cells and a significantly reduced life expectancy (200 vs. 325 days) as compared to control animals. Flow cytometric analysis at distinct time points showed a pronounced infiltration by CD5+ B cells of the peritoneal cavity, spleen, lymph nodes, liver and bone marrow which was significantly stronger in the NFAT2 ko cohort. Most of the CD5+ B cells in TCL1+NFAT2 ko mice showed high expression of ZAP70 and CD38, whereas TCL1 transgenic mice only demonstrated very few CD5+ B cells with concomitant expression of ZAP70 and CD38. To investigate the effects of an NFAT2 ko on proliferation and apoptosis of CD5+CD19+ CLL cells, we performed in vivo BrdU incorporation assays with subsequent flow cytometric analysis. Interestingly, we could show that CLL cells isolated from spleens, bone marrow and peripheral blood from mice with an NFAT ko exhibited significantly higher rates of proliferation than control animals. To identify NFAT2 target genes resonsible for the observed alterations in the disease phenotype, we subsequently peformed a gene expression analysis with CD5+CD19+ CLL cells from TCL1+NFAT2 ko mice with CLL cells from TCL1+ mice serving as controls. Here, we detected a significantly altered expression of 22 genes associated with B cell anergy in the TCL1+NFAT2 ko cohort. The vast majority of these genes was expressed significantly less in the absence of NFAT2 with Lck, Pacsin1, Hspa14 and CD166 constituting the strongest hits with up to 10fold reduced gene expression. Downregulation of the identified target genes was subsequently confirmed using RT-PCR and Western Blotting. In summary, our data provide strong evidence that NFAT2 is a critical regulator of CD38 and ZAP70 expression and substantially controls cell cycle progression in CLL cells. In addition, we could show that NFAT2 controls the expression of several anergy-associated genes and that its absence prevents the acquisition of an anergic phenotype by the CLL cells correlating with a significantly more aggressive course of the disease. Taken together, our data demonstrate that NFAT2 plays an essential role in the pathogenesis of CLL and implicate this transcription factor as a potential target in its treatment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document