Thermal Design Improvements on Avionic Device in Confined Space under Supersonic Conditions

2013 ◽  
Vol 842 ◽  
pp. 536-540
Author(s):  
Yang Li ◽  
Gui Cui Fu ◽  
Nan Li

Thermal design improvements of avionic devices in confined space under supersonic conditions are presented in this paper through a numerical studies and improvements on the heat sinks and cooling vents. The components locations are also rearranged. Thus the avionic device can operate in the confined space, and heat dissipation can be easier. Simulation results show that the cooling vents added on the surfaces of the electronic cabinet can make heat exchange more smoothly, and the high temperature zones are affected by the changing of the locations of heat sinks obviously. The design rules and guidelines are proposed to improve thermal design. The design and simulation results can be used as the reference for the thermal design of other avionic devices in the similar style.

2003 ◽  
Vol 125 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Avram Bar-Cohen ◽  
Madhusudan Iyengar ◽  
Allan D. Kraus

The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.


2011 ◽  
Vol 308-310 ◽  
pp. 346-350 ◽  
Author(s):  
Xiang Jun Ma ◽  
Li Gang Wu ◽  
Shi Xun Dai ◽  
Bo You Zhou ◽  
Kun Bai ◽  
...  

Heat dissipation of high-power LED lamps has become a key technology to LED package due to the improvement of the LED output power. A detailed simulation of temperature distribution of three chips high-power LED tube lamp was made by finite element method. Based on the consistency of the LED lamp experimental and simulation results, the analyses of the effect of thermal conductivities of PCB, thermal grease, heat sink, convection coefficients and the length of the lamp on the junction temperature were made, which provide an effective reference for the thermal design.


2012 ◽  
Vol 160 ◽  
pp. 3-7
Author(s):  
Wei Wei ◽  
Ping Yang ◽  
Qian Hong He ◽  
Quay Le Chen

With the rapid development of the micro projector, the problems of its power consumption and heat dissipation have been increasingly serious. The thermal design can improve its reliability and cut costs at the design stage. This article selects DLP built-in micro projector provided by TI Company to analyze, uses thermal analysis software Flotherm to get the temperature distribution and temperature curves of the measuring points in the steady state, then compares the simulation results of the cooling optimization with the numerical analysis, which reduces the temperatures of thermal sources and shells. The conclusion supplies new theoretical basis on the development of mobile phones integrated with the projection function.


2008 ◽  
Author(s):  
Mark Aaron Chan ◽  
Christopher R. Yap ◽  
Kim Choon Ng

CPUs with high clock rates can dramatically increase heat dissipation within their encapsulation due to internal Joule heat from the transistors. The conventionally used air cooling systems for CPUs, such as the aluminum or copper extruded heat sink types, have severe heat transfer “bottlenecks” due to high thermal resistances and they easily reach their thermal design limits (TDL). Alternative cooling devices such as heat pipes and liquid cooling tends to have externally attached radiator/condenser and/or pump and such designs are cumbersome. This paper describes the modeling, design, and testing of a compact (about the size of the Intel stock cooler, diameter: 96mm, height: 50mm), fully integrated, orientation-free, evaporator-condenser device for CPU cooling, with excellent attributes of low thermal resistance from phase change phenomena and minimal vapor pressure drop. The prototype fabricated is designed to reject 200 W (twice the capacity of conventional heat sinks). It is made of copper and uses distilled water as the working fluid. The working fluid boils inside a porous structure clad evaporator and is transported radially to nearby air-cooled condenser sections; this unique arrangement minimizes space while providing adequate area for air convection. Testing was done by subjecting it to varying heat loads and air flow rates. A best performance of 0.206 K/W of the device’s thermal resistance was achieved at a fan air flow rate of 34.5 CFM under 203 W of cooling load, and moreover, these results are in good agreement with the simulation. Further improvement of the current design could yield significantly better performance as the device has yet to reach its full potential, especially with regard to the design of its air-cooled curvilinear fins and boiling enhancement.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2286
Author(s):  
Jan Kominek ◽  
Martin Zachar ◽  
Michal Guzej ◽  
Erik Bartuli ◽  
Petr Kotrbacek

Miniaturization of electronic devices leads to new heat dissipation challenges and traditional cooling methods need to be replaced by new better ones. Polymer heat sinks may, thanks to their unique properties, replace standardly used heat sink materials in certain applications, especially in applications with high ambient temperature. Polymers natively dispose of high surface emissivity in comparison with glossy metals. This high emissivity allows a larger amount of heat to be dissipated to the ambient with the fourth power of its absolute surface temperature. This paper shows the change in radiative and convective heat transfer from polymer heat sinks used in different ambient temperatures. Furthermore, the observed polymer heat sinks have differently oriented graphite filler caused by their molding process differences, therefore their thermal conductivity anisotropies and overall cooling efficiencies also differ. Furthermore, it is also shown that a high radiative heat transfer leads to minimizing these cooling efficiency differences between these polymer heat sinks of the same geometry. The measurements were conducted at HEATLAB, Brno University of Technology.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4020
Author(s):  
Peng Sun ◽  
Yiping Lu ◽  
Jianfei Tong ◽  
Youlian Lu ◽  
Tianjiao Liang ◽  
...  

In order to provide a theoretical basis for the thermal design of the neutron production target, flow and heat transfer characteristics are studied by using numerical simulations and experiments. A rectangular mini-channel experimental model consistent with the geometric shape of the heat dissipation structure of neutron production target was established, in which the aspect ratio and gap thickness of the test channel were 53.8:1 and 1.3 mm, respectively. The experimental results indicate that the critical Re of the mini-channel is between 3500 and 4000, and when Re reaches 21,000, Nu can reach 160. The simulation results are in good agreement with the experimental data, and the numerical simulation method can be used for the variable structure optimization design of the target in the later stage. The relationship between the flow pressure drop of the target mini-channel and the aspect ratio and Re is obtained by numerical simulation. The maximum deviation between the correlation and the experimental value is 6%.


Author(s):  
Nico Setiawan Effendi ◽  
Kyoung Joon Kim

A computational study is conducted to explore thermal performances of natural convection hybrid fin heat sinks (HF HSs). The proposed HF HSs are a hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS). Parametric effects such as a fin spacing, an internal channel diameter, a heat dissipation on the performance of HF HSs are investigated by CFD analysis. Study results show that the thermal resistance of the HS increases while the mass-multiplied thermal resistance of the HS decreases associated with the increase of the channel diameter. The results also shows the thermal resistance of the SHF HS is 13% smaller, and the mass-multiplied thermal resistance of the HHF HS is 32% smaller compared with the pin fin heat sink (PF HS). These interesting results are mainly due to integrated effects of the mass-reduction, the surface area enhancement, and the heat pumping via the internal channel. Such better performances of HF HSs show the feasibility of alternatives to the conventional PF HS especially for passive cooling of LED lighting modules.


2018 ◽  
Vol 144 ◽  
pp. 04010
Author(s):  
Bobin Saji George ◽  
M. Ajmal ◽  
S. R. Deepu ◽  
M. Aswin ◽  
D. Ribin ◽  
...  

Intensifying electronic component power dissipation levels, shortening product design cycle times, and greater than before requirement for more compact and reliable electronic systems with greater functionality, has heightened the need for thermal design tools that enable accurate solutions to be generated and quickly assessed. The present numerical study aims at developing a computational tool in OpenFOAM that can predict the heat dissipation rate and temperature profile of any electronic component in operation. A suitable computational domain with defined aspect ratio is chosen. For analyzing, “buoyant Boussinesq Simple Foam“ solver available with OpenFOAM is used. It was modified for adapting to the investigation with specified initial and boundary conditions. The experimental setup was made with the dimensions taken up for numerical study. Thermocouples were calibrated and placed in specified locations. For different heat input, the temperatures are noted down at steady state and compared with results from the numerical study.


2021 ◽  
Vol 1035 ◽  
pp. 584-590
Author(s):  
Kang Yuan ◽  
Zhao Ran Zheng

MCrAlY can be used as bond coats for thermal barrier coatings (TBCs) with good ductility and excellent resistance against high temperature oxidation and hot corrosion. The behavior of the microstructure development in the MCrAlY coatings plays a key role on the oxidation resistance. In this paper, the microstructure in the coatings oxidized at 750~1100 °C was analyzed. The formation of the phases and their fraction were studied by comparing thermodynamic simulation results with the experimental observations. At higher temperatures (>1000 °C) β-to-γ’-to-γ phase transformation took place while at lower temperatures (<1000 °C) β phase would transfer to γ directly. The results show that the simulation can semi-quantitatively predict the microstructure formed in the coating.


Author(s):  
Jimmy Chuang ◽  
Jin Yang ◽  
David Shia ◽  
Y L Li

Abstract In order to meet increasing performance demand from high-performance computing (HPC) and edge computing, thermal design power (TDP) of CPU and GPU needs to increase. This creates thermal challenge to corresponding electronic packages with respect to heat dissipation. In order to address this challenge, two-phase immersion cooling is gaining attention as its primary mode of heat of removal is via liquid-to-vapor phase change, which can occur at relatively low and constant temperatures. In this paper, integrated heat spreader (IHS) with boiling enhancement features is proposed. 3D metal printing and metal injection molding (MIM) are the two approaches used to manufacture the new IHS. The resultant IHS with enhancement features are used to build test vehicles (TV) by following standard electronic package assembly process. Experimental results demonstrated that boiling enhanced TVs improved two-phase immersion cooling capability by over 50% as compared to baseline TV without boiling enhanced features.


Sign in / Sign up

Export Citation Format

Share Document