Evaluation and Analysis in Product Evolution Design

2014 ◽  
Vol 912-914 ◽  
pp. 1625-1628
Author(s):  
Yong Ming Wu ◽  
Liang Hou ◽  
Rong Shen Lai ◽  
Wen Guang Lin

aiming at the difficulty of dynamic evaluation and realizing innovation in Product Family Evolution (PFE), an evaluation method of the product family for mass customization is presented by analyzing the influences of customer needs, enterprise resources and product data in the implementation process of Product Family (PF). From the perspective of time and space, the dynamic and static relative of PFE is summarized. In order to judge the situation of current product family and achieve the evolution innovation of product family, a comparative evaluation model for the product family based on Grey Conjunction Degree is established. Finally, the effectiveness and feasibility of the method were proved by evaluation and analysis of Small Wheel Loaders (SWLs).

2013 ◽  
Vol 797 ◽  
pp. 579-584
Author(s):  
Zhi Feng Deng ◽  
Zi Qiang Zhang ◽  
Run Dian Li ◽  
Hong Hui Xu

In order to perform adaptability comprehensive evaluation of auto assembly machine product platform for small shaft and sleeve subassemblies, with product family-oriented design, more reasonably and effectively, a fuzzy comprehensive evaluation method based on fuzzy analytic hierarchy process (FAHP) is discussed in this paper. And the hierarchical structure of comprehensive evaluation index system, the alternative set and the comprehensive evaluation model of product platform are established through this method, thus obtaining a satisfaction value, which realizes the change from qualitative evaluation to quantitative evaluation for product platform evaluation. The result shows that the method has a strong feasibility and operability.


2019 ◽  
Vol 11 (18) ◽  
pp. 5106 ◽  
Author(s):  
Marko Jausovec ◽  
Metka Sitar

This paper proposes an extended comparative evaluation model framework (ECEMF) that highlights two objectives: (1) a specific economic evaluation method for the cost-optimisation of prefabricated lightweight system envelopes to achieve a greater value of the building, and (2) a comparative evaluation model framework usable by different profiles of stakeholders, when adopting the decision on the most optimal envelope type in the early design phase. Based on the proposed framework, the analysis was conducted for the case study building representing a small single-family house located in Slovenia. The methodology applied is based on the life cycle cost (LCC) including construction, operation, maintenance, and refurbishment costs, but excluding dismantling, disposal, and reuse, for the period of 50 years’ lifetime of the building which combines the Building Information Modelling (BIM) with Value for Money (VfM) assessment. To exploit the automated evaluation process in the computing environment, several tools were used, including Archicad for BIM in combination with Legep software for LCC. On one hand, the model confirms the assumption that the optimal value parameters of a building do not only depend on the typical costs related to high-performance buildings. On the other hand, from the stakeholders’ view, the model enables the choice of the optimal solution regarding the envelope type to be made in the early design phase. In this view, the model could function as an important decision tool, with a direct economic impact on the value.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1365-1372
Author(s):  
Xiaohui Mao ◽  
Liping Fei ◽  
Xianping Shang ◽  
Jie Chen ◽  
Zhihao Zhao

The measurement performance of road vehicle automatic weighing instrument installed on highways is directly related to the safety of roads and bridges. The fuzzy number indicates that the uncertain quantization problem has obvious advantages. By analyzing the factors affecting the metrological performance of the road vehicle automatic weighing instrument, combined with the fuzzy mathematics theory, the weight evaluation model of the dynamic performance evaluation of the road vehicle automatic weighing instrument is proposed. The factors of measurement performance are summarized and calculated, and the comprehensive evaluation standard of the metering performance of the weighing equipment is obtained, so as to realize the quantifiable analysis and evaluation of the metering performance of the dynamic road vehicle automatic weighing instrument in use, and provide data reference for adopting a more scientific measurement supervision method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zhiru Li ◽  
Wei Xu ◽  
Huibin Shi ◽  
Qingshan Zhang ◽  
Fengyi He

Combined with the research of mass customization and cloud manufacturing mode, this paper discussed the production planning of mass customization enterprises in the context of cloud manufacturing in detail, analyzed the attribute index of manufacturing resource combination, and given a system considering the characteristics of batch production in mass customization and the decentralization of manufacturing resources in cloud manufacturing environment. Then, a multiobjective optimization model has been constructed according to the product delivery date, product cost, and product quality that customers care most about. The Pareto solution set of production plan has been obtained by using NSGA-II algorithm. This paper established a six-tier attribute index system evaluation model for the optimization of production planning scheme set of mass customization enterprises in cloud manufacturing environment. The weight coefficients of attribute indexes were calculated by combining subjective and objective weights with analytic hierarchy process (AHP) and entropy weight method. Finally, the combined weights calculated were applied to the improved TOPSIS method, and the optimal production planning scheme has been obtained by ranking. This paper validated the effectiveness and feasibility of the multiobjective model and NSGA-II algorithm by the example of company A. The Pareto effective solution has been obtained by solving the model. Then the production plan set has been sorted synthetically according to the comprehensive evaluation model, and the optimal production plan has been obtained.


2019 ◽  
Vol 27 (3) ◽  
pp. 125-133
Author(s):  
Yapeng Wang ◽  
Jinguo Zhang ◽  
Yundou Wang ◽  
Xiaowen Xiong ◽  
Xin Zhao

Background: An objective, comprehensive and scientific evaluation of emergency medical rescue capability (EMRC) is of great realistic significance in assisting the health administrative department to grasp the overall response capability of all emergency medical rescue teams, enabling each team to have a full understanding of its own strengths and weakness and improve itself accordingly. At present, the research on the evaluation of EMRC in Hazardous Chemicals Accidents (HCA) is not systematic and in-depth, and the existing research results also have some shortcomings, such as, the lack of strong theoretical support for the evaluation index system, the relatively single function of evaluation methods, and so on. Objectives: The objective of this article is to research the evaluation index system and a new evaluation method of EMRC in HCA to overcome the above shortcomings. Methods: It establishes an emergency medical rescue capability model by employing the competency model and then constructs the evaluation index system on the basis of the analysis of all the factors of emergency medical rescue capability in hazardous chemical accidents and sets up an evaluation model based on the theory of connection numbers and partial connection numbers. It determines the competence ranking of several emergency medical rescue teams and the competence state of an individual emergency medical rescue team by calculating the connection principal value, and it also predicts how the emergency medical rescue capability will develop based on the values of partial connection numbers. Results: The example shows that the calculation process of this model is relatively simple, and its assessment results are objective and authentic, and moreover, its multi-functions can make up for the deficiency of the simplified function of other evaluation models. Conclusion: This method is scientific and rational to some extent and can provide reference for evaluation problems of the same kind.


2012 ◽  
Vol 134 (11) ◽  
Author(s):  
Seung Ki Moon ◽  
Daniel A. McAdams

Companies that generate a variety of products and services are creating, and increasing research on, mass-customized products in order to satisfy customers’ specific needs. Currently, the majority of effort is focused on consumers who are without disabilities. The research presented here is motivated by the need to provide a basis of product design methods for users with some disability—often called universal design (UD). Product family design is a way to achieve cost-effective mass customization by allowing highly differentiated products serving distinct market segments to be developed from a common platform. By extending concepts from product family design and mass customization to universal design, we propose a method for developing and evaluating a universal product family within uncertain market environments. We will model design strategies for a universal product family as a market economy where product family platform configurations are generated through market segments based on a product platform and customers’ preferences. A coalitional game is employed to evaluate which design strategies provide more benefit when included in the platform based on the marginal profit contribution of each strategy. To demonstrate an implementation of the proposed method, we use a case study involving a family of light-duty trucks.


Author(s):  
Carolyn G. Conner ◽  
Joseph P. De Kroon ◽  
Farrokh Mistree

Abstract In this paper we present the Product Variety Tradeoff Evaluation Method for assessment of alternative product platforms in product family design. The Product Variety Tradeoff Evaluation Method is an attention-directing tool for evaluating tradeoffs between commonality and individual product performance for product platform alternatives with differing levels of commonality. We apply the Product Variety Tradeoff Evaluation Method to a case study in transmission redesign for a family of cordless drills. The emphasis in this paper is placed on the method rather than on the results, per se.


2019 ◽  
Vol 11 (12) ◽  
pp. 1453 ◽  
Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Lili Lin ◽  
Chenglu Wen ◽  
Chenhui Yang ◽  
...  

Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of 3D measurement over large-scale traffic environment. This paper presents a quantitative visual recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM) to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model (TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point clouds show that the proposed method is feasible and efficient.


2010 ◽  
Vol 163-167 ◽  
pp. 3110-3113
Author(s):  
Zheng Xi Gong ◽  
Jian Guo Yang

Reliability analysis is the premise for reinforcement and maintenance of an existing highway tunnel. In order to understand the structure reliability of an existing highway tunnel, a fuzzy mat-ter-element evaluation method was put forward based on entropy weight according to the fuzzy matter-element analysis method. Firstly, levels of inspection results were regarded as objects of matter-element and composite fuzzy matter-elements were constructed considering such factors and their evaluation indexes as cracks of concrete lining, lining thickness, concrete strength, cavities behind the lining and water leakage conditions. Secondly, reliability evaluation results of the existing tunnel structure were obtained by calculating the relevancy. Lastly, fuzzy matter-element evaluation model was effectively used to evaluate reliability of one highway tunnel structure.


Sign in / Sign up

Export Citation Format

Share Document