Deposition of Amorphous Boron Carbide Films with Pulsed Magnetron Sputtering and Evaluation of their Mechanical Properties

2014 ◽  
Vol 970 ◽  
pp. 97-101
Author(s):  
Kei Saito ◽  
Ryo Fujii ◽  
Naoto Ohtake

Amorphous boron carbide films were deposited with pulsed magnetron sputtering using a sintered B4C target with Ar as the processing gas, and the chemical components, structure, and mechanical properties of the films were investigated. To deposit amorphous boron carbide films using a B4C target, a pulsed power supply (14.4 kHz) was employed. Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the chemical compositions and structure of the films. According to the results of XPS, the B/C ratio in the films synthesized with pulsed magnetron sputtering was 2.21. Nanoindentation tests and ball-on-disk (BoD) tests were performed to evaluate the mechanical properties. It was found that the films deposited by pulsed magnetron sputtering had an average hardness of 32.1 GPa and an average Youngs modulus of 235.1 GPa.

2018 ◽  
Vol 36 (4) ◽  
pp. 697-703 ◽  
Author(s):  
G.W. Strzelecki ◽  
K. Nowakowska-Langier ◽  
R. Chodun ◽  
S. Okrasa ◽  
B. Wicher ◽  
...  

AbstractThe research on the influence of modulation frequency on the properties of films synthesized using a unique pulsed power supply combined with a standard unbalanced circular magnetron was conducted in the process of pulsed magnetron sputtering (PMS). It was shown that by using different levels of modulation, the composition of plasma (measured by optical emission spectroscopy, OES) as well as film growth rate and morphology (observed with scanning electron microscope, SEM), can be changed. The impact of modulation is related to the used materials and gases and can vary significantly. It was concluded that modulation frequency can greatly influence the synthesis of materials and can be used as an additional parameter in PMS. Specific relations between modulation frequency and synthesized material require further investigation.


2016 ◽  
Vol 56 (4) ◽  
pp. C168 ◽  
Author(s):  
Chien-Jen Tang ◽  
Cheng-Chung Jaing ◽  
Chuen-Lin Tien ◽  
Wei-Chiang Sun ◽  
Shih-Chin Lin

Author(s):  
Abbas Razmi ◽  
Ruhi Yeşildal

Enhancement of mechanical properties by using TiN/TiCN/TiC multilayer thin films deposited on commercially pure cast Titanium (CP-Ti), Ti6Al4V and silicon (Si) substrates via magnetron sputtering technique was investigated in this study. The structural, chemical and mechanical properties of the coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nanoindentation and scratch test. Results of the XRD analysis showed reflections corresponded to FCC (1 1 1) cubic and polycrystalline structure for TiN/TiCN/TiC films. XPS analysis revealed formation of titanium nitride, titanium carbonitride and titanium carbide in the coatings. According to SEM images, the coatings demonstrated dense cross-sectional morphology and columnar structure as well as good adhesion to the substrate with a thickness of 1.77 μm deposited on silicon (1 0 0). Scratch and nanoindentation test results showed the best mechanical behavior for the coated Ti6Al4V substrate material with the 19.96 GPa hardness and 25 N critical load values, because of its higher hardness and toughness of substrate in compared to Cp-Ti substrate.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joo Hyung Lee ◽  
Seong Hun Kim

Abstract Incorporation of nanofillers into polyurethane (PU) is a promising technique for enhancing its thermal and mechanical properties. Silane grafting has been used as a surface treatment for the functionalization of graphene oxide (GO) with numerous reactive sites dispersed on its basal plane and edge. In this study, amine-grafted GO was prepared using silanization of GO with (3-aminopropyl)triethoxysilane. The functionalized graphene oxide (fGO) was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy. Next, it was introduced in PU fabricated using polycaprolactone diol, castor oil, and hexamethylene diisocyanate. The fGO–PU nanocomposites were in turn characterized by FT-IR, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and a universal testing machine. The results obtained from these analyses showed changes in structural thermal properties, as well as improved thermal stability and mechanical properties because of the strong interfacial adhesion between the fGO and the PU matrix.


2017 ◽  
Vol 29 (3) ◽  
pp. 427-435 ◽  
Author(s):  
Xiaohong Yuan ◽  
Wenzheng Xu ◽  
Fenglin Huang ◽  
Qingqing Wang ◽  
Qufu Wei ◽  
...  

Purpose Structural color is more brilliant in color, more resistant to sunshine and will not fade away with time, and more environmental friendly than traditional dyes and pigments. The purpose of this paper is to prepare structural colors of fabrics coated with Ag/TiO2 composite films by magnetron sputtering, and analyze the relationship between the colors and the thicknesses of TiO2 films in Ag/TiO2 composite films. Design/methodology/approach Preparation of Ag/TiO2 composite films by magnetron sputtering and their deposition on textiles were investigated. The chemical compositions and surface morphology of Ag/TiO2 composite films were examined by X-ray photoelectron spectroscopy and scanning electron microscopy, and the structural color of fabric coated with Ag/TiO2 composite film was also analyzed. Findings Ag/TiO2 composite films deposited on textile substrate exhibited structural colors, and the bright colors could be adjusted and controlled by the thickness of TiO2 thin films in Ag/TiO2 composite films without any dyes or pigments. By comparing the results of theoretical calculation and experimental results, it was found that the creation of structural colors by the experiment was coincident to the colors by theoretical calculation according to the film interference principle. There was a linear relationship between the thickness of TiO2 film and the wavelength of the structural color. Originality/value Compared to traditional coloration by dyes or pigments, the coloration of textile by structural color from Ag/TiO2 composite films prepared by magnetron sputtering was very environmental friendly and simple without water consuming, time consuming and tedious work. Structural colors have great potential applications in textiles in place of traditional dyes and pigments. Furthermore, the textiles coated with Ag/TiO2 composite films have good electrical, optical and magnetic properties, and can be used in apparel, home furnishings and industrial fabrics.


2011 ◽  
Vol 233-235 ◽  
pp. 1188-1191
Author(s):  
Hong Cai ◽  
Yan Chen ◽  
Yun Ying Wu

Nano-TiO2 particles were prepared by sol-gel method, of which the surfaces were coated by SiO2. The coating was achieved by the hydrolysis of sodium silicate (Na2SiO3) in ammonium chloride (NH4Cl). The surface bonding, phase constitution and chemical components of the samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of the SiO2 coating process onto TiO2 surface was analyzed. Results show that SiO2 particles were immobilized on the TiO2 surface via Ti—O—Si bondings, which formed at the interface. The SiO2 layer on TiO2 surface was amorphous, the photocatalytic performance was decreased of the TiO2 while its stability was enhanced after surface modification.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1754
Author(s):  
Bang-Lei Zhao ◽  
Le Wang ◽  
Li-Feng Zhang ◽  
Jian-Gang Ke ◽  
Zhuo-Ming Xie ◽  
...  

In this work, FeCr-based films with different Y2O3 contents were fabricated using radio frequency (RF) magnetron sputtering. The effects of Y2O3 content on their microstructure and mechanical properties were investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductive coupled plasma emission spectrometer (ICP) and a nanoindenter. It was found that the Y2O3-doped FeCr films exhibited a nanocomposite structure with nanosized Y2O3 particles uniformly distributed into a FeCr matrix. With the increase of Y2O3 content from 0 to 1.97 wt.%, the average grain size of the FeCr films decreased from 12.65 nm to 7.34 nm, demonstrating a grain refining effect of Y2O3. Furthermore, the hardness of the Y2O3-doped FeCr films showed an increasing trend with Y2O3 concentration, owing to the synergetic effect of dispersion strengthening and grain refinement strengthening. This work provides a beneficial guidance on the development and research of composite materials of nanocrystalline metal with a rare earth oxide dispersion phase.


Author(s):  
Abbas Razmi ◽  
Ruhi Yeşildal

Enhancement of mechanical properties by using TiN/TiCN/TiC multilayer thin films deposited on commercially pure cast Titanium (CP-Ti), Ti6Al4V and silicon (Si) substrates via magnetron sputtering technique was investigated in this study. The structural, chemical and mechanical properties of the coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nanoindentation and scratch test. Results of the XRD analysis showed reflections corresponded to FCC (1 1 1) cubic and polycrystalline structure for TiN/TiCN/TiC films. XPS analysis revealed formation of titanium nitride, titanium carbonitride and titanium carbide in the coatings. According to SEM images, the coatings demonstrated dense cross-sectional morphology and columnar structure as well as good adhesion to the substrate with a thickness of 1.77 μm deposited on silicon (1 0 0). Scratch and nanoindentation test results showed the best mechanical behavior for the coated Ti6Al4V substrate material with the 19.96 GPa hardness and 25 N critical load values, because of its higher hardness and toughness of substrate in compared to Cp-Ti substrate.


Sign in / Sign up

Export Citation Format

Share Document