Investigation of Nonisothermal Crystallization Behaviors of Poly and Silica Nanocomposites Using Differential Scanning Calorimetry

2005 ◽  
Vol 295-296 ◽  
pp. 39-44 ◽  
Author(s):  
Ling Xue Kong ◽  
Z. Peng

Nonisothermal crystallization behaviors of PVA and poly (vinyl alcohol) and Silica (PVA/SiO2) nanocomposites prepared via a self-assembly monolayer (SAM) technique are investigated in this study. Differential scanning calorimetry (DSC) is used to measure the crystallization temperature and enthalpy of PVA and nanocomposites in nitrogen at various cooling rate. The results show that the degree of crystallinity of PVA and nanocomposites decreases when the SiO2 content increases but increases with an increasing cooling rate. The peak crystallization temperature decreases with an increasing cooling rate.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Abstract In this study, the differential scanning calorimetry (DSC) tests were performed to measure the nonisothermal crystallization behavior of carbon fiber reinforced polyether ether ketone (CF/PEEK) composites under different cooling rates. The characteristic parameters of crystallization were obtained, and the nonisothermal crystallization model was established. The crystallization temperature range of the material at different cooling rates was predicted by the model. The unidirectional laminates were fabricated at different cooling rates in the crystallization temperature range. The results showed that the crystallization temperature range shifted to a lower temperature with the increase of cooling rate, the established nonisothermal crystallization model was consistent with the DSC test results. It is feasible to shorten the cooling control range from the whole process to the crystallization range. The crystallinity and transverse tensile strength declined significantly with the increase of the cooling rate in the crystallization temperature range. The research results provided theoretical support for the selection of cooling conditions and temperature control range, which could be applied to the thermoforming process of semi-crystalline polymer matrixed composites to improve the manufacturing efficiency.


2018 ◽  
Vol 935 ◽  
pp. 36-39 ◽  
Author(s):  
Azamat A. Zhansitov ◽  
Azamat L. Slonov ◽  
Arthur E. Baikaziev ◽  
Marina M. Murzakanova ◽  
S.Yu. Khashirova

Differential scanning calorimetry was used to study the temperatures and character of phase transitions of fibers based on polyether ether ketones. It is shown that in the production of fine fibers from polyether ether ketones, a predominantly amorphous structure is formed. Increasing the temperature to the crystallization temperature leads to an almost twofold increase in the degree of crystallinity. Lower molecular weight polyether ether ketone is characterized by a higher rate of crystallization and the formation of a more homogeneous crystalline structure.


2019 ◽  
pp. 089270571987919
Author(s):  
Volodymyr Krasinskyi ◽  
Ivan Gajdos ◽  
Oleh Suberlyak ◽  
Viktoria Antoniuk ◽  
Tomasz Jachowicz

The structure and thermal characteristics of nanocomposites based on polyvinyl alcohol (PVA) and montmorillonite (MMT) intercalated with polyvinylpyrrolidone were investigated by X-ray diffraction analysis and differential scanning calorimetry. The modification of PVA with intercalated MMT reduces the degree of crystallinity of the resulting nanocomposites but significantly increases their thermal stability. Under ultrasound, the intercalated MMT was completely distributed in a PVA solution and formed a monocrystalline structure. Films based on PVA with modified MMT were cross-linked at 110°C in the presence of 5 wt% acrylic acid and 0.5 wt% Ferrous(II) sulfate as an initiator. The formed films have a homogeneous cross-linked structure.


2014 ◽  
Vol 508 ◽  
pp. 110-113
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

The temperature and duration of β1→α+β2 transformation of Ti-6Al-4V alloy in cooling process were measured by differential scanning calorimetry, and transformation activation energy and Avrami exponent of β1→α+β2 were also calculated. The results show that the cooling rate is in the range of 在5~20°C/min, the transformation temperature and the transformation duration β1→α+β2 transformation of Ti-6Al-4V alloy decreased with the increasing cooling rate, its transformation activation energy decreased with the increasing phase transformation volume fraction, and Avrami exponent was between 1 and 2 at 660°C.


1993 ◽  
Vol 331 ◽  
Author(s):  
Becky J. Ficek ◽  
Nicholas A. Peppas

AbstractPoly(vinyl alcohol) microparticles were prepared by a novel freezing-thawing process in the absence of a crosslinking agent. An aqueous PVA solution to which 1.25 wt% sodium lauryl sulfate was added was dispersed in corn oil. The system was agitated and the ensuing suspended droplets of PVA solution were solidified by a cyclic freezing-thawing process. Key parameters of the process were the PVA to corn oil ratio, the amount of surfactant added, agitation speed, number of freeze cycles, temperatures of freezing and thawing, and presence of additional components.Crystallization was observed during the freezing-thawing process. The degree of crystallinity was measured with differential scanning calorimetry. Bovine serum albumin was incorporated into the particles by an absorption technique. Studies of BSA release from the microparticles in vitro showed that the release could be prolonged for up to 7 days. BSA diffusion coefficients were calculated from these data and the release mechanism was identified.


2007 ◽  
Vol 15 (7) ◽  
pp. 561-567
Author(s):  
Qingyuan Hu ◽  
Xiangling Ji ◽  
Yunfeng Lu

Non-isothermal crystallisation kinetics of a polyamide 6/mesoporous silica nanocomposite (PA6-MS) has been investigated by differential scanning calorimetry (DSC) at different cooling rates. Mandelkern, Jeziorny-Ziabicki and Ozawa methods were applied to describe this crystallisation process. The analyses show that the mesoporous silica particles act as nucleating agents in the composite and that the Avrami exponent n varies from 3.0 to 4.6. The addition of mesoporous silica influenced the mechanism of nucleation and the growth of polyamide 6 (PA 6) crystallites.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2840 ◽  
Author(s):  
Ina Keridou ◽  
Luis J. del Valle ◽  
Lutz Funk ◽  
Pau Turon ◽  
Lourdes Franco ◽  
...  

The non-isothermal crystallization of the biodegradable poly(4-hydroxybutyrate) (P4HB) has been studied by means of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). In the first case, Avrami, Ozawa, Mo, Cazé, and Friedman methodologies were applied. The isoconversional approach developed by Vyazovkin allowed also the determination of a secondary nucleation parameter of 2.10 × 105 K2 and estimating a temperature close to 10 °C for the maximum crystal growth rate. Similar values (i.e., 2.22 × 105 K2 and 9 °C) were evaluated from non-isothermal Avrami parameters. All experimental data corresponded to a limited region where the polymer crystallized according to a single regime. Negative and ringed spherulites were always obtained from the non-isothermal crystallization of P4HB from the melt. The texture of spherulites was dependent on the crystallization temperature, and specifically, the interring spacing decreased with the decrease of the crystallization temperature (Tc). Synchrotron data indicated that the thickness of the constitutive lamellae varied with the cooling rate, being deduced as a lamellar insertion mechanism that became more relevant when the cooling rate increased. POM non-isothermal measurements were also consistent with a single crystallization regime and provided direct measurements of the crystallization growth rate (G). Analysis of the POM data gave a secondary nucleation constant and a bell-shaped G-Tc dependence that was in relative agreement with DSC analysis. All non-isothermal data were finally compared with information derived from previous isothermal analyses.


Sign in / Sign up

Export Citation Format

Share Document