Effect of Mixing Process on the Fracture Behavior of HA/PLLA Composite Material

2005 ◽  
Vol 297-300 ◽  
pp. 2453-2458 ◽  
Author(s):  
Sang Dae Park ◽  
Mitsugu Todo ◽  
Kazuo Arakawa ◽  
Yasuharu Takenoshita

Effect of mixing process on the fracture behavior of HA/PLLA Composites were investigated. Fracture toughness values of HA/PLLA composites prepared under different mixing time and rotor speed were measured. The fracture surface morphology was also examined by scanning electron microscopy. It was found that the fracture toughness of HA/PLLA composite decreases due to decrease of ductile deformation of PLLA matrix and debonding of interfaces with increase of the rotor speed and mixing time. Effect of mixing process on neat PLLA was also assessed, and it was found that the fracture toughness of PLLA decreases due to such pocess. Disappearance of multiple craze formation and thermal degradation were found to be the primary mechanisms of the toughness degradation.

2011 ◽  
Vol 236-238 ◽  
pp. 1523-1527 ◽  
Author(s):  
Xiao Meng Zhang ◽  
Shu Feng Ye ◽  
Li Hua Xu ◽  
Peng Qian ◽  
Lian Qi Wei ◽  
...  

The SiC/FexSiycomposites were synthesized by reaction sintering process with iron tailings as raw material and carbon as reductant. The room and high temperature flexural strengths and fracture toughness of composites were studied in this paper. Fracture surfaces were observed by means of a scanning electron microscope (SEM). The results showed that the room temperature flexural strength of SiC/FexSiycomposites changed along with the different contents of FexSiyand sintering temperature. The flexural strength of composites reaches the maximum at 900°C. The correlation between flexural strength and temperature is consistent with curveⅠ.The fracture toughness of composites is related to the content of FexSiy. The fracture behavior of composites is mainly transcrystalline in room temperature and intercrystalline in high temperature.


2017 ◽  
Vol 35 (No. 6) ◽  
pp. 522-531 ◽  
Author(s):  
Sluková Marcela ◽  
Levková Julie ◽  
Michalcová Alena ◽  
Horáčková Šárka ◽  
Skřivan Pavel

The changes in the structure of cereal proteins during the mixing of flour into dough was described and evaluated. Wheat gliadins and glutenins (gluten proteins) have unique physical properties and play an important role in breadmaking. The effect of mixing time on the formation and the structure of the gluten network was determined using scanning electron microscopy (SEM). Buckwheat flour (gluten-free) was used to compare the development of structure during the mixing process.


2010 ◽  
Vol 25 (5) ◽  
pp. 982-990 ◽  
Author(s):  
Jin-Yoo Suh ◽  
R. Dale Conner ◽  
C. Paul Kim ◽  
Marios D. Demetriou ◽  
William L. Johnson

Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2209
Author(s):  
Mateusz Kopec ◽  
Adam Brodecki ◽  
Grzegorz Szczęsny ◽  
Zbigniew L. Kowalewski

In this paper, fracture behavior of four types of implants with different geometries (pure titanium locking plate, pure titanium femoral implant, Ti-6Al-4V titanium alloy pelvic implant, X2CrNiMo18 14-3 steel femoral implant) was studied in detail. Each implant fractured in the human body. The scanning electron microscopy (SEM) was used to determine the potential cause of implants fracture. It was found that the implants fracture mainly occurred in consequence of mechanical overloads resulting from repetitive, prohibited excessive limb loads or singular, un-intendent, secondary injures. Among many possible loading types, the implants were subjected to an excessive fatigue loads with additional interactions caused by screws that were mounted in their threaded holes. The results of this work enable to conclude that the design of orthopedic implants is not fully sufficient to transduce mechanical loads acting over them due to an increasing weight of treated patients and much higher their physical activity.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2509
Author(s):  
Seyed Mohammad Javad Razavi ◽  
Rasoul Esmaeely Neisiany ◽  
Moe Razavi ◽  
Afsaneh Fakhar ◽  
Vigneshwaran Shanmugam ◽  
...  

Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.


Author(s):  
Sergio Limon ◽  
Peter Martin ◽  
Mike Barnum ◽  
Robert Pilarczyk

The fracture process of energy pipelines can be described in terms of fracture initiation, stable fracture propagation and final fracture or fracture arrest. Each of these stages, and the final fracture mode (leak or rupture), are directly impacted by the tendency towards brittle or ductile behavior that line pipe steels have the capacity to exhibit. Vintage and modern low carbon steels, such as those used to manufacture energy pipelines, exhibit a temperature-dependent transition from ductile-to-brittle behavior that affects the fracture behavior. There are numerous definitions of fracture toughness in common usage, depending on the stage of the fracture process and the behavior or fracture mode being evaluated. The most commonly used definitions in engineering fracture analysis of pipelines with cracks or long-seam weld defects are related to fracture initiation, stable propagation or final fracture. When choosing fracture toughness test data for use in engineering Fracture Mechanics-based assessments of energy pipelines, it is important to identify the stage of the fracture process and the expected fracture behavior in order to appropriately select test data that represent equivalent conditions. A mismatch between the physical fracture event being modeled and the chosen experimental fracture toughness data can result in unreliable predictions or overly conservative results. This paper presents a description of the physical fracture process, behavior and failure modes that pipelines commonly exhibit as they relate to fracture toughness testing, and their implications when evaluating cracks and cracks-like features in pipelines. Because pipeline operators, and practitioners of engineering Fracture Mechanics analyses, are often faced with the challenge of only having Charpy fracture toughness available, this paper also presents a review of the various correlations of Charpy toughness data to fracture toughness data expressed in terms of KIC or JIC. Considerations with the selection of an appropriate correlation for determining the failure pressure of pipelines in the presence of cracks and long-seam weld anomalies will be discussed.


2011 ◽  
Vol 23 (7) ◽  
pp. 526-534 ◽  
Author(s):  
Yang Wang ◽  
Boming Zhang ◽  
Jinrui Ye

Hybrid nanocomposites were successfully prepared by the incorporation of polyethersulfone (PES) and organoclay into epoxy resin. They had higher fracture toughness than the prepared PES/epoxy blend and organoclay/epoxy nanocomposites. The microstructures of the hybrid nanocomposites were studied. They were comprised of homogeneous PES/epoxy semi-interpenetrating network (semi-IPN) matrices and organoclay micro-agglomerates made up of tactoid-like regions composed of ordered exfoliated organoclay with various orientations. The former was confirmed with dynamic mechanical analysis, scanning electron microscopy and transmission electron microscopy, while the latter was successfully observed with X-ray diffraction measurements, optical microscope, scanning electron microscope and transmission electron microscope. The improvement of their fracture toughness was due to the synergistic toughening effect of the PES and the organoclay and related to their microstructures.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2011 ◽  
Vol 691 ◽  
pp. 32-36
Author(s):  
José G. Miranda-Hernández ◽  
Elizabeth Refugio-García ◽  
Eduardo Térres-Rojas ◽  
Enrique Rocha-Rangel

The effect of different titanium additions (0.5, 1, 2, 3 and 10 vol. %), milling intensity (4 and 8 h) and sintered temperature (1500 and 1600 °C) on microstructure and fracture toughness of Al2O3-based composites was analyzed in this study. After high energy milling of a titanium and Al2O3mixtures, powder mixture presents fine distribution and good homogenization between ceramic and metal. After milling powders during 8 h they were obtained very fine particles with 200 nm average sizes. Microstructures of the sintered bodies were analyzed with a scanning electron microscopy, where it was observed that the microstructure presents the formation of a small and fine metallic net inside the ceramic matrix. From fracture toughness measurements realized by the fracture indentation method, it had that when titanium content in the composite increases, fracture toughness is enhanced until 83% with respect to the fracture toughness of pure Al2O3. This behavior is due to the formation of metallic bridges by titanium in the Al2O3matrix.


1988 ◽  
Vol 120 ◽  
Author(s):  
J.-M. Yang ◽  
J.-C. Chou ◽  
C. V. Burkland

AbstractThe fracture behavior of a 3-D braided Nicalon fiber-reinforced SiC matrix composite processed by chemical vapor infiltration (CVI) has been investigated. The fracture toughness and thermal shock resistance under various thermomechanical loadings have been characterized. The results obtained indicate that a tough and durable structural ceramic composite can be achieved through the combination of 3-D fiber architecture and the low temperature CVI processing.


Sign in / Sign up

Export Citation Format

Share Document