One Method of System Analysis Based on Some Parameters in the Underground Chambers and Application

2007 ◽  
Vol 353-358 ◽  
pp. 2517-2520
Author(s):  
Xiao Jing Li ◽  
Wei Shen Zhu ◽  
Wei Min Yang

Based on the underground structure scheme of Langyashan hydro-electrical project, lots of elastic-plastic numerical analysis were conducted considering modulus of deformation, layout depth of underground opening, height of main factory premises, coefficient of lateral compressive stress, as the mainly mechanical parameters that influenced the stability analysis of underground openings. The mathematical statistics method was employed to investigate the displacement variation law of key point surrounding house periphery and found the forecast model. Then the forecast model was used to analyze the sensitivity parameters. It was shown that there was a good agreement between theoretic result and monitoring result in situ.

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


2021 ◽  
pp. 014459872098361
Author(s):  
Yanqiu Wang ◽  
Zhengxin Sun ◽  
Pengtai Li ◽  
Zhiwei Zhu

This paper analyzes the small cosmopolitan and stability of the industrial coupling symbiotic network of eco-industrial parks of oil and gas resource-based cities. Taking Daqing A Ecological Industrial Park as an example, we constructed the characteristic index system and calculated the topological parameters such as the agglomeration coefficient and the average shortest path length of the industrial coupling symbiotic network. Based on the complex network theory we analyzed the characteristics of the scaled world, constructed the adjacency matrix of material and information transfers between enterprises, drew the network topology diagram. We simulated the system analysis and analyzed the stability of the industrial coupling symbiotic network of the eco-industrial park using the network efficiency and node load and maximum connected subgraph. The analysis results are as follows: the small world degree δ of Daqing A Eco-industrial Park is 0.891, which indicates that the industrial coupled symbiotic network has strong small world characteristics; the average path is 1.268, and the agglomeration coefficient is 0.631. The probability of edge connection between two nodes in a symbiotic network is 63.1%, which has a relatively high degree of aggregation, indicating that energy and material exchanges are frequent among all enterprises in the network, the degree of network aggregation is high, and the dependence between nodes is high; when the tolerance parameter is 0 to 0.3, the network efficiency and the maximum connected subgraphs show a sharp change trend, indicating that the topology of the industrial coupling symbiotic network of the eco-industrial park changes drastically when the network is subjected to deliberate attacks. It is easy to cause the breakage of material flow and energy flow in the industrial park, which leads to the decline of the stability of the industrial coupling symbiotic network of the eco-industrial park.


2013 ◽  
Vol 694-697 ◽  
pp. 2881-2885
Author(s):  
Hai Yan Wang ◽  
Jian Xin Zhang

Dyeing textile’s information management system is the basis of accurate classification of color, machine studying methods have became a popular area of research for application in color classification. Traditional classification methods have high efficiency and are very simple , but they are dependent on the distribution of sample spaces. If the sample data properties are not independent, forecast precision will been affected badly and internal instability will appear. An application of Gray-Relation for dyeing textile color classification has been designed, which offsets the discount in mathematical statistics method for system analysis. It is applicable regardless of variant in sample size, while quantizing structure is in agreement with qualitative analysis. On the basis of theoretical analysis, Dyeing textile color classification was conducted in the conditions of random sampling、 uniform sampling and stratified sampling. The experimental results proofs that by using Gray-Relation, dyeing textile color classification does not need to be dependent on sample space distribution, and increases the stability of classification.


2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


1996 ◽  
Vol 451 ◽  
Author(s):  
C. Henry de Villeneuve ◽  
J. Pinson ◽  
F. Ozanam ◽  
J. N. Chazalviel ◽  
P. Allongue

ABSTRACTThis works addresses the question of the direct attachment of organic molecules on Si(111) by an electrochemical method. Anodic grafting of -OR group is demonstrated by in-situ STM and the LDOS characterized. The grafting of aryl groups, by reduction of aryl diazonium salts in aqueous solution, is also described. This approach leads to well ordered and close-packed thin molecular films with various functionality. Different chemical and structural characterizations conclude to a Si-C binding, between the Si surface and aryl groups. The stability of films is also investigated.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Soumya Chakraborty ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

AbstractA cosmological model having matter field as (non) interacting dark energy (DE) and baryonic matter and minimally coupled to gravity is considered in the present work with flat FLRW space time. The DE is chosen in the form of a three-form field while radiation and dust (i.e; cold dark matter) are the baryonic part. The cosmic evolution is studied through dynamical system analysis of the autonomous system so formed from the evolution equations by suitable choice of the dimensionless variables. The stability of the non-hyperbolic critical points are examined by Center manifold theory and possible bifurcation scenarios have been examined.


Sign in / Sign up

Export Citation Format

Share Document