Study of Corrosion Performance of Electroless Ni-P Coating with Molybdenum Disulfide Nanoparticles

2008 ◽  
Vol 373-374 ◽  
pp. 256-259 ◽  
Author(s):  
Xian Guo Hu ◽  
Wen Ju Cai ◽  
Jiu Cong Wan ◽  
Yu Fu Xu ◽  
Xiao Jun Sun

The electroless nickel-phosphor coatings containing molybdenum disulfide nanoparticles were prepared and analyzed in this paper. The effects of incorporation of MoS2 into the Ni-P coating on the morphology of the coating surface and corrosion properties were also studied. Corrosion tests were conducted inside a salt spray box with NaCl solution (5.0 wt%). The corrosional surfaces were studied and analyzed through optical microscope, X-ray spectrometer (XRD) and scanning electron microscopy (SEM). The investigation on the relationship between heat-treatment and the corrosion resistance of the coatings showed that the corrosion resistance of the composite coating became worse because of the occurrence of transformation from non-crystalline to crystalline, and then increased the metastable intergradation of the composite coating. Meanwhile, the experimental results also showed that corrosion resistance of the coating containing MoS2 was higher than that of steel substrate. The corrosion mechanism of the composite coatings was mainly ascribed to the formation of micro-cell around the nanosized MoS2 particles, and the active ion like Cl- destroyed the surface film and induced the corrosion towards the inside part of coating.

2016 ◽  
Vol 23 (3) ◽  
pp. 309-314
Author(s):  
M. Edwin Sahayaraj ◽  
J.T. Winowlin Jappes ◽  
I. Siva ◽  
N. Rajini

AbstractElectroless nickel coating treatment improves the corrosion resistance of mild steel. This work aims at studying the corrosion behavior of electroless Ni-P/TiO2 composite and multilayer coatings applied to the mild steel substrate as their as-plated state and furnace annealed at various temperatures and compared both the coatings’ corrosion performance. The corrosion behavior of the deposits was evaluated by potentiodynamic polarization studies in 3.5 wt% sodium chloride solution. The results showed that the corrosion resistance of the multilayer coating was two times higher compared to the composite coatings. Further, the corrosion mechanism was discussed in terms of microstructure, phase transformation, grain size, and microstrain.


2015 ◽  
Vol 813-814 ◽  
pp. 135-139 ◽  
Author(s):  
K.G. Girisha ◽  
R. Rakesh ◽  
C. Durga Prasad ◽  
K.V. Sreenivas Rao

In this present research work, corrosion behaviour of grit blasted AISI 410 steel substrate coated with NiCr/Al2O3,NiCr/ZrO2 particles was investigated using salt spray test as per ASTM B117. Coatings were prepared using air Plasma spray process. Nickel chromium was used as bond coat for obtaining good fastening between the base metal and coated particles. The microstructures of the coated and un-coated specimens were characterized using scanning electron microscope and optical microscope. Distribution coated particle was found uniform throughout the steel substrate was revealed from SEM microphotographs. The obtained results shows significant improvement in corrosion resistance and micro hardness for NiCr/Al2O3 and NiCr/ZrO2 coating deposited on steel by plasma spray process than the as sprayed base steel substrates.


2015 ◽  
Vol 227 ◽  
pp. 147-150
Author(s):  
Agnieszka Nagrabia ◽  
Maciej Sowa ◽  
Wojciech Simka ◽  
Artur Maciej

Zn-Ni and Zn-Co monolayer and Zn-Ni/Zn-Co multilayer (from 2 to 128 layers) alloy coatings were formed on steel substrate by electrodeposition from acidic Zn-Ni bath and neutral Zn-Co bath. Samples were tested in salt chamber for corrosion resistance in neutral salt spray. Open circuit potential measurement and gravimetric study of corrosion were carried for samples immersed in the 5% NaCl solution.It was found that coatings of Zn-Ni surface layer occurred higher corrosion resistance then the coatings of Zn-Co surface layer. Sixteen-layer coating with Zn-Ni surface layer proved to be most effective in protecting the steel substrate. Zn-Ni monolayer showed the lowest corrosion potential, which affects the corrosion properties. Sample weight changes during exposure to a corrosive environment are related to digestion of the coating and the formation of corrosion products.


2012 ◽  
Vol 468-471 ◽  
pp. 1163-1166 ◽  
Author(s):  
Wan Chang Sun

Ni-W-P-Al2O3 electroless composite coating was successfully co-deposited on 45 steel substrate using electroless plating. Optical microscope (OM), micro-hardness tester and potentiodynamic polarization were used to analyze the morphology, micro-hardness and corrosion resistance of the composite coating. The effect of Al2O3 concentration in the plating solution on the micro-hardness and corrosion resistance of the composite coating was mainly discussed. The results show that Al2O3 particles co-deposit with Ni-W-P homogeneously. The micro-hardness and corrosion resistance of the coating are improved with the increasing of Al2O3 concentration in the plating bath, and then decrease at a high Al2O3 concentration.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
B. M. Praveen ◽  
T. V. Venkatesha

Nano sized TiO2particles were prepared by sol-gel method. TiO2nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2composite was generated by electrodeposition on mild steel plates. The effect of TiO2on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance property using electrochemical, weight loss, and salt spray methods. The paper revealed higher resistance of composite coating to corrosion. Microhardness of the composite coating was determined. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature. Average crystalline size of the composite coating was calculated. The anticorrosion mechanism of the composite coating was also discussed.


2020 ◽  
Vol 993 ◽  
pp. 1075-1085
Author(s):  
Li Fan ◽  
Hai Yan Chen ◽  
Hai Liang Du ◽  
Yue Hou ◽  
Qian Cheng

Nickel-based composite coatings reinforced by spherical tungsten carbide were deposited on 42CrMo alloy steel using plasma transfer arc welding (PTAW) process. Their electrochemical corrosion properties in NaCl solution under atmospheric and high pressure were studied by polarization curve, electrochemical impedance spectroscopy. The corrosion and erosion resistance of the coatings were also investigated by salt spray corrosion and erosion corrosion tests. The results show that the self-corrosion potential of the composite coatings increased with the increase of tungsten carbide content, and the Cr element in Ni60 sample formed a stable and compact passivation film. Compared with corrosion at atmospheric pressure, the adsorption and penetration of Cl- on the coating surface enhanced due to the increase of Cl- activity under pressure, thereby to weaken the corrosion resistance. The Samples that passivated in salt spray environment, cannot completely hinder the corrosion of the coating, just only to slow down the corrosion. This study can provide theoretical basis for deep-sea oil drilling and production engineering equipment.


2012 ◽  
Vol 468-471 ◽  
pp. 1177-1180
Author(s):  
Wan Chang Sun

Abstract. Ni-W-P-Al2O3 electroless composite coating was successfully co-deposited on 45 steel substrate using electroless plating. Optical microscope (OM), X-ray diffraction (XRD) and potentiodynamic polarization were used to analyze the morphology, microstructure and corrosion resistance of the composite coating. The results show that Al2O3 particles co-deposit homogeneously, and the structure of the composite coating as deposited is amorphous and crystallite. After heat treatment, the amorphous structure of the composite coating appears a precipitation transformation. When annealing at 400°C, because of the emergence of crystal defects brought out by the precipitation of crystal phases, the composite coating exhibits the lowest corrosion resistance. As the annealing temperature rising to 600°C, the crystalline structure continually grows up and the precipitation transformation tends to be completed. Then the crystal defects decreases which results in an improvement to the corrosion resistance of the composite coating.


2018 ◽  
Vol 65 (2) ◽  
pp. 131-137 ◽  
Author(s):  
Yu Han ◽  
Yanqiu Xia ◽  
Xin Chen ◽  
Liang Sun ◽  
Dongyu Liu ◽  
...  

Purpose The purpose of this study is to improve the corrosion resistance of the transmission towers by Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La) and cerium (Ce) (denoted as Zn-Al-Mg-Re) in Q345 steel. Design/methodology/approach The phase structure of Zn-Al-Mg-Re composite coatings has been determined by X-ray diffraction, whereas their surface morphology and cross-sectional microstructure as well as cross-sectional elemental composition have been analyzed by scanning electron microscopy and energy-dispersive spectrometry. Moreover, the corrosion resistance of Zn-Al-Mg-Re composite coatings has been evaluated by acetic acid accelerated salt spray test of copper strip. Findings Experimental results show that doping with La and Ce favors to tune the composition (along with the generation of new phase, such as LaAl3 or Al11Ce3) and refine the microstructure of Zn-Al-Mg galvanizing coatings, thereby significantly improving the corrosion resistance of the coatings. Particularly, Zn-Al-Mg-Re with 0.15% (mass fraction) La exhibits the best corrosion resistance among the tested galvanizing coatings. Originality/Value Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La) and cerium (Ce) (denoted as Zn-Al-Mg-Re) have been prepared on Q345 steel substrate by hot-dip galvanizing so as to improve the corrosion resistance of the transmission towers, and to understand the corrosion inhibition of the Zn-Al-Mg-Re coating.


Author(s):  
Chandrasekhara Sastry Chebiyyam ◽  
Pradeep N ◽  
Shaik AM ◽  
Hafeezur Rahman A ◽  
Sandeep Patil

Abstract Nano composite coatings on HSLA ASTM A860 alloy, adds to the barrier efficacy by increase in the microhardness, wear and corrosion resistance of the substrate material. Additionally, reduction of delamination of the nano composite coating sample is ascertained. Ball milling is availed to curtail the coating samples (Al2O3/ZrO2) to nano size, for forming a electrodeposited product on the substrate layer. The curtailment in grain size was ascertained to be 17.62% in Ni-Al2O3/ZrO2 nano composite coating. During the deposition process, due to the presence of Al2O3/ZrO2 nano particles an increase in cathode efficiency is ascertained. An XRD analysis of the nano composite coating indicates a curtailment in grain size along with increase in the nucleation sites causing a surge in the growth of nano coating layer. In correlation to uncoated HSLA ASTM A36 alloy sample, a surge in compressive residual stress by 47.14%, reduction of waviness by 32.14% (AFM analysis), upsurge in microhardness by 67.77% is ascertained in Ni-Al2O3/ZrO2 nano composite coating. Furthermore, in nano coated Ni-Al2O3/ZrO2 composite a reduction is observed pertaining to weight loss and friction coefficients by 27.44% and 13% in correlation to plain uncoated alloy respectively. A morphology analysis after nano coating indicates, Ni-Al2O3/ZrO2 particles occupy the areas of micro holes, reducing the wide gaps and crevice points inside the matrix of the substrate, enacting as a physical barrier to upsurge the corrosion resistance by 67.72% in correlation to HSLA ASTM A860 base alloy.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850074
Author(s):  
YAN SHEN ◽  
PRASANTA K. SAHOO ◽  
YIPENG PAN

In order to enhance the corrosion resistance of mooring chain, the composite coatings are carried out on the surface of 22MnCrNiMo steel for mooring chain by double-pulsed electrodeposition technology using centrifugal force in the rotating device. The microstructure and anti-corrosion performance of the composite coatings have been investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and corrosion resistance of composite coatings in the presence of nano-SiC. The results show that the presence of nano-SiC has a significant effect on the preparation of composite coating during the process. The surface of the coating becomes compact and smooth at a moderate concentration of nano-SiC particles. Furthermore, the best corrosion resistance of the composite coatings can be obtained when the concentration of nano-SiC particles is 2.0[Formula: see text]g.L[Formula: see text] after salt spray treatment.


Sign in / Sign up

Export Citation Format

Share Document