Effect of Zr Addition on the Mechanical Behavior, Ductility and Wear Resistance of Aluminum Grain Refined by Titanium

2010 ◽  
Vol 442 ◽  
pp. 15-25 ◽  
Author(s):  
A.I.O. Zaid ◽  
S.M.A. Al-Qawabah

Aluminum and its alloys are the second most commonly used metal for a variety of engineering applications. They solidify in columnar structure with large grain size which normally affects their mechanical behavior and surface quality. It is now becoming customary in aluminum foundry to grain refine their structure by adding either titanium or titanium + boron to their melt before solidification. In this paper, the effect of addition of Ti on the mechanical properties, ductility and wear resistance of commercially pure aluminum is investigated. Titanium was added at a level of 0.15 % wt. This ratio corresponds to the peritictic limit on the Al-Ti phase diagram and is normally used for grain refining of aluminum. It was found that addition of Ti at this level resulted in grain refinement of aluminum structure whereas addition of Zr alone resulted in grain coarsening of Al structure while it resulted in grain refinement when it is added in the presence of Ti. Regarding the effect of Zr on the wear resistance of aluminum it was found that at small loads and speeds addition of Ti or Zr or both together resulted in deterioration of its wear resistance whereas at higher loads and speeds resulted in pronounced improvement of its wear resistance.

2012 ◽  
Vol 05 ◽  
pp. 342-349
Author(s):  
M. S. MOHEBBI ◽  
A. AKBARZADEH

A novel SPD process for manufacturing high strength tubes and cylinders titled as accumulative spin-bonding (ASB) is proposed. This process is applied to a commercially pure aluminum up to four cycles and its effects on the microstructure and mechanical properties are examined by optical microscopy, TEM, microhardness and tension tests. The results show that ultra-fine grains are developed during the process leading to a nanostructure with average grain size in order of 150 nm. Mechanical properties indicate that while the hardness of outer layers is more than inner ones, the hardness and its homogeneity is increased by increasing the ASB cycles. As a result of grain refinement and the scheme of hardness development, the yield and tensile strength of material are increased significantly up to the values of 194 and 235 MPa, respectively.


2013 ◽  
Vol 652-654 ◽  
pp. 1072-1075 ◽  
Author(s):  
Wan Wu Ding ◽  
Jiang Tao Zhu ◽  
Wen Jun Zhao ◽  
Tian Dong Xia

The grain refining effects of Al-Ti, Al-TiC and Al-Ti-C master alloys on commercially pure aluminum were compared, and the grain refinement mechanism of TiAl3 and TiC among master alloys was discussed. The results show that: the grain refinement of the master alloys Al-TiC and Al-Ti toward pure aluminum mainly stems from the heterogeneous nucleation role of TiC and TiAl3 particles, but with the extension of heat preservation time of fused mass, its role of heterogeneous nucleation will decline due to dissolution of TiAl3 and aggregation and precipitation of TiC. The preferable grain refinement effects of Al-Ti-C master alloys toward pure aluminum are mainly due to the fact that when TiAl3 and TiC particles are acted commonly as heterogeneous nucleation particles, the heterogeneous nucleation effect of TiC particles will be enhanced because of the presence of TiAl3.


2011 ◽  
Vol 311-313 ◽  
pp. 712-715 ◽  
Author(s):  
Niu Can Liu ◽  
Jun Qing Li ◽  
Gang Li

Two kinds of ZL108 alloys containing titanium are produced with electrolytic low-titanium aluminum alloy (named as ZL108D) and pure aluminum as well as Al-Ti master alloy (named as ZL108R) respectively. The influence of different titanium alloying methods on the microstructure and wear behavior is investigated. The result shows that it is an effective for grain refining of ZL108 alloy by adding titanium to the melt before casting. Addition of titanium can improve the wear resistance of ZL108 alloy, while ZL108D is superior to ZL108R. It is attributed to the addition with electrolytic low-titanium aluminum alloy results in better grain refinement.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2007 ◽  
Vol 280-283 ◽  
pp. 1453-1458 ◽  
Author(s):  
U. Akin ◽  
Harun Mindivan ◽  
R. Samur ◽  
E.S. Kayali ◽  
H. Çimenoğlu

In this paper the tribological performance of oxide (Cr2O3, ZrO2CaO and Al203) and combined coatings applied on a commercially pure aluminum sheet were presented. Combined coatings were produced by applying Polytetrafluoroethylene (PTFE) film on the oxide coatings. Among the oxide coatings Cr2O3 exhibited the highest and Al2O3 exhibited the lowest wear resistance, in accordance with their hardness. Combined coatings exhibited superior wear resistance than oxide coatings even at heavy wear testing conditions.


1983 ◽  
Vol 27 ◽  
Author(s):  
P.B. Madakson

ABSTRACTCommercially pure Al was implanted with 300 keV Si+ and 200 keV Pb+ to doses of between l011 and 1017 ions/cm2. Changes in friction, wear, oxidation and hardness were investigated. Silicon increased the hardness and wear resistance of Al and significantly decreased friction and the oxidation of the implanted surface. These changes were observed to be almost proportional to the implanted dose. The implantation of Pb+ resulted in a linear increase in hardness and a decrease in surface oxidation with dose. Friction decreased and wear resistance increased but the changes were not dose dependent. The implantation of Si+ did not significantly alter the distribution of impurities, such as Fe and Cu within the Al matrix, but Pb+ resulted in a diffusion of Fe to the implanted surface. Formation of precipitates was observed and the improvements in the surface properties studied are considered to result from precipitation hardening, which involves the impediment of dislocation movement by the precipitates during plastic deformation of the implanted Al.


2004 ◽  
Vol 842 ◽  
Author(s):  
Han-Sol Kim ◽  
In-Dong Yeo ◽  
Tae-Yeub Ra ◽  
Won-Yong Kim

ABSTRACTWe report on microstructure, mechanical properties and wear resistance of Fe-Al based alloys with various alloying elements. The microstructures were examined using optical and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscope (EDS). Two types of alloys were prepared using vacuum arc melting; one is Fe-28Al based alloys (D03 structured) with and without alloying elements such as Mo and Zr. The other one is Fe-35Al based alloys (B2 structured) produced with same manner. For both types of alloys, equiaxed microstructures were observed by the addition of Mo, while dendritic structures were observed by the Zr addition. These microstructural features were more evinced with increasing the content of alloying elements. Concerning the mechanical properties and wear resistance, Fe-35Al based alloys with or without Mo addition superior to Fe-28Al based alloys especially in the high temperature region.


2021 ◽  
Vol 10 (1) ◽  
pp. 1752-1765
Author(s):  
Essam B. Moustafa ◽  
A. Melaibari ◽  
Ghazi Alsoruji ◽  
Asmaa M. Khalil ◽  
Ahmed O. Mosleh

Abstract The strength and wear resistance of aluminium alloys must be improved to enhance their usage in lightweight constructions. Thus, in this study, graphene nanoplates (GNPs) and boron nitride (BN) nanoparticles were reinforced into the Al 5251 aluminium alloy by friction stir processing (FSP). The Al 5251 aluminum alloy sheets were patterned with holes and filled by mono GNPs, mono BN nanoparticles and a hybrid of BN nanoparticles and GNPs. The microstructure, wear, and mechanical properties of the as-received, after FSP, and the manufactured surface nanocomposites were analysed. Wear tests were performed using two methods: weight loss and volume loss methods. FSP led to four times grain refinement. Due to the Zener pinning effect, the reinforcement nanoparticles improved the grain refinement effect by seven times decrease in the mean grain size. The wear rate by volume and weight loss with reinforcing BN nanoparticles decreased by 160 and 1,340%, respectively. Note that the GNP reinforcement insignificantly improved the wear resistance and hardness compared with the BN nanoparticles. The hardness was increased by 50, 120, and 80% by reinforcing the Al 5251 alloy with GNPs, BN, and a hybrid of BN nanoparticles and GNPs, respectively. The nanocomposite reinforced with GNPs exhibited superior mechanical properties compared to the other nanocomposites.


2012 ◽  
Vol 510-511 ◽  
pp. 356-363 ◽  
Author(s):  
A.I.O. Zaid

Aluminum and its alloys solidify in large grains columnar structure which tends to reduce their mechanical behaviour and surface quality. Therefore, they are industrially grain refined by titanium or titanium + boron. Furthermore, aluminum oxidizes in ordinary atmosphere which makes its weldability difficult and weak. Therefore, it is anticipated that the effect of addition of zirconium at a weight percentages of 0.1% (which proved to be an effective grain refiner on the weldability of aluminum grain refined by Ti) is worthwhile investigating. This formed the objective of this research work. In this paper, the effect of zirconium addition at a weight percentage of 0.1%, which corresponds to the peritctic limit on the aluminum-zirconium phase diagram, on the weldability of aluminum grain refined by Ti is investigated. Rolled sheets of commercially pure aluminum, Al grain refined Ti of 3 mm thickness were welded together using Gas Tungsten Arc Welding method (GTAW), formerly known as TIG. A constant air gap was maintained at a constant current level, 30 ampere AC, was used because it removes the oxides of the welding process under the same process parameters. Metallographic examination of weldments of the different combinations of aluminum and its microalloys at the heat affected zone, HAZ, and base metal was carried out and examined for width, porosity, cracks and microhardness. It was found that grain refining of commercially pure aluminum by Ti resulted in enhancement of its weldability. Similarly, addition of zirconium to Al grain refined by Ti resulted in further enhancement of the weldment. Photomicrographs of the HAZ regions are presented and discussed.


2019 ◽  
Vol 29 (3) ◽  
pp. 437-447 ◽  
Author(s):  
Xiang CHEN ◽  
Guang-sheng HUANG ◽  
Shuai-shuai LIU ◽  
Ting-zhuang HAN ◽  
Bin JIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document