Experimental Study for the Choice of a Matrix Epoxy Resin for the Elaboration of Laminates

2013 ◽  
Vol 550 ◽  
pp. 17-23 ◽  
Author(s):  
C. Aribi ◽  
B. Bezzazi ◽  
A. Mir

The performances of composite materials are influenced by the properties of the matrix used. The latter ensures the desired form and the protection of the reinforcements against the external attacks. This work comprises a comparative study between laminates developed with different matrices in epoxy resin. Their characterization has to choose the best matrix able to give best results in static and dynamic tests. The resins used are provided by Granitex Algéria and which are primary Médapoxy STR resins, Médapoxy inject 812 and Médapoxy Al resin. Hence, the results of tensile tests prove a fragility of the AL resin which influences the maximal constraint of traction compared to the STR primary resin. Furthermore, Inject 812 resin shows very limited mechanical properties due to the changes of the epoxy network with the addition of diluents which has significantly decreased its viscosity.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1688
Author(s):  
Marius Marinel Stănescu ◽  
Dumitru Bolcu

When obtaining environment-friendly hybrid resins made of a blend of Dammar natural resin, in a prevailing volume ratio, with epoxy resin, it is challenging to find alternatives for synthetic resins. Composite materials reinforced with waste paper and matrix made of epoxy resin or hybrid resin with a volume ratio of 60%, 70% and 80% Dammar were studied. All samples obtained have been submitted to tensile tests and Scanning Electron Microscopy (SEM) analysis. The tensile response, tensile strength, modulus of elasticity, elongation at break and the analysis of the fracture surface were determined. The damping properties of vibrations of bars in hybrid resins and in the composite materials under study were also examined. The mechanical properties of the four types of resins and of the composite materials were compared. The chemical composition for a hybrid resin specimen were obtained using the Fourier Transformed Infrared Spectroscopy (FTIR) and Energy, Dispersive X-ray Spectrometry (EDS) analyzes.


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2014 ◽  
Vol 775-776 ◽  
pp. 588-592
Author(s):  
Camila Rodrigues Amaral ◽  
Ruben Jesus Sanchez Rodriguez ◽  
Magno Luiz Tavares Bessa ◽  
Verônica Scarpini Cândido ◽  
Sergio Neves Monteiro

The correlation between the structural network of a diglycidyl ether of the bisphenol-A (DGEBA) epoxy resin, modified by two distinct aliphatic amines (tetraethylenepentamine TEPA and jeffamine D230), and its mechanical properties, was investigated as possible matrix for abrasive composites applications. Both flexural tests, to determine the yield stress and the elastic modulus, as well as impact tests to determine the notch toughness, were performed. The DGEBA/D230 presented the highest stiffness and toughness but lowest yield stress. This epoxy network also displayed a greater plastic deformation during fracture.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540025 ◽  
Author(s):  
Hitoshi Takagi ◽  
Antonio N. Nakagaito ◽  
Kazuya Kusaka ◽  
Yuya Muneta

Cellulose nanofibers have been showing much greater potential to enhance the mechanical and physical properties of polymer-based composite materials. The purpose of this study is to extract the cellulose nanofibers from waste bio-resources; such as waste newspaper and paper sludge. The cellulosic raw materials were treated chemically and physically in order to extract individualized cellulose nanofiber. The combination of acid hydrolysis and following mechanical treatment resulted in the extraction of cellulose nanofibers having diameter of about 40 nm. In order to examine the reinforcing effect of the extracted cellulose nanofibers, fully biodegradable green nanocomposites were fabricated by composing polyvinyl alcohol (PVA) resin with the extracted cellulose nanofibers, and then the tensile tests were conducted. The results showed that the enhancement in mechanical properties was successfully obtained in the cellulose nanofiber/PVA green nanocomposites.


2016 ◽  
Vol 47 (8) ◽  
pp. 2184-2204 ◽  
Author(s):  
Duchamp Boris ◽  
Legrand Xavier ◽  
Soulat Damien

The tensile behaviour of braid reinforcement is classically described by the behaviour of composite elaborated from these reinforcements. Few studies concern the tensile behaviour of braided fabrics. In this paper biaxial and triaxial braids are manufactured on a braiding loom. The evolution of key parameters as linear mass and braiding angle in function of process parameters is presented. Braid reinforcements are characterized in uniaxial tensile. The mechanical behaviour is analysed and compared in function of the braiding angle, but also different kinds of braid are considered. A specific behaviour called “double-peak” is identified for triaxial braids which have a higher braiding angle. The evolution of the braiding angle measured during tensile tests gives a comprehension on the mechanical behaviour of dry braids. Associated with this experimental study, an analytical model is also proposed, to predict mechanical properties of braid reinforcements.


SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.


1999 ◽  
Author(s):  
Y. Schmitt ◽  
C. Paulick ◽  
Y. Bour ◽  
F. X. Royer

Abstract The control of the quality of mixture based on very short carbon fibers and epoxyde resins leads to suitable mixture for molding of complex geometries. A gain in fluidity is obtained if the suspensions are treated by ultrasounds and simultaneously stirred under vacuum. Addition in a very small ratio of microbubbles in the mixture allows to obtain a viscosity less than those of the matrix alone. For many polymer materials the gain of fluidity can be of 20 to 25% with size and concentration of the microspheres thoroughly chosen. A certain number of new resins is developped to elaborate composite materials with specific mechanical properties close to standard aluminium. Tensile test an ultimate stress are used to quantify the improvements of the mechanical properties. Fillers concentrations up to 30 % are obtained.


2021 ◽  
pp. 36-45
Author(s):  
E.I. Krasnov ◽  
◽  
V.M. Serpova ◽  
L.G. Khodykin ◽  
A.V. Gololobov ◽  
...  

Presents a literature review in the field of methods for strengthening titanium and its alloys by introducing various refractory particles into the matrix. The main problematic issues related to the chemical nature of refractory particles and titanium alloys that arise during hardening are briefly described. The main structural, physical and mechanical properties and morphology of such metal composite materials are described. The dependence of the influence of various refractory particles and their amount, as well as the effect of heat treatment on the physical and mechanical properties of microns based on titanium alloys, is presented.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1074
Author(s):  
Jacopo Donnini ◽  
Francesca Bompadre ◽  
Valeria Corinaldesi

The use of Fabric-Reinforced Cementitious Matrix (FRCM) systems as externally bonded reinforcement for concrete or masonry structures is, nowadays, a common practice in civil engineering. However, FRCM durability against aggressive environmental conditions is still an open issue. In this paper, the mechanical behavior of a glass FRCM system, after being subjected to saline, alkaline and freeze–thaw cycles, has been investigated. The experimental campaign includes tensile tests on the fabric yarns, compression and flexural tests on the matrix and tensile tests (according to AC434) on FRCM prismatic coupons. The effects of the different environmental exposures on the mechanical properties of both the constituent materials and the composite system have been investigated and discussed. Ion chromatography analysis has also been performed to better understand the damage mechanisms induced by environmental exposures and to evaluate the ions’ penetration within the inorganic matrix. Alkaline exposure was shown to be the most detrimental for Alkali-Resistant (AR) glass fiber yarns, causing a reduction in tensile strength of about 25%. However, mechanical properties of the FRCM composite seemed not to be particularly affected by any of the artificial aging environments.


Sign in / Sign up

Export Citation Format

Share Document