A Novel Noise Resistance Optical Accelerometer Based on Micro-Ring Resonant Cavity

2013 ◽  
Vol 562-565 ◽  
pp. 232-236
Author(s):  
Xiao Qian Wang ◽  
Shu Bin Yan ◽  
Ke Zhen Ma ◽  
Peng Fei Xu ◽  
Wen Dong Zhang

To meet a high-precision accelerometer resistance of temperature, humidity and other external noise, a new multi-ring cascade optical accelerometer structure is designed. The micro-ring resonator on the cantilever beam based on the photo-elastic effect and the contrast are fabricated with the same manufacturing process and size, which can effectively meet the consistency of the contrast and test micro-ring resonator on the cantilever. The one resonance point curve will split into two under the acceleration, thus the acceleration value can be obtained by detecting the wavelength of the two resonant points. By testing the cascade race-track shaped micro-ring resonator at different temperatures, the Q=104, the test requirement of cascade race-track shaped micro-ring accelerometer in different environments is greatly met. The design can be widely applied to the occasions of penetration system with high impact, strong vibration and so on. And the anti-noise and anti-jamming features of the integrated miniaturized high-sensitivity MOEMS sensors are realized.

2013 ◽  
Vol 12 (7) ◽  
pp. 451-459
Author(s):  
Ashraf Yehia El-Naggar ◽  
Mohamed A. Ebiad

Gasoline come primarily from petroleum cuts, it is the preferred liquid fuel in our lives. Two gasoline samples of octane numbers 91 and 95 from Saudi Arabia petrol stations were studied. This study was achieved at three different temperatures 20oC, 30oC and 50oC representing the change in temperatures of the different seasons of the year. Both the evaporated gases of light aromatic hydrocarbons (BTEX) of gasoline samples inside the tank were subjected to analyze qualitatively and quantitatively via capillary gas chromatography. The detailed hydrocarbon composition and the octane number of the studied gasoline samples were determined using detailed hydrocarbon analyzer. The idea of research is indicating the impact of light aromatic compounds in gasoline on the toxic effect of human and environment on the one hand, and on octane number of gasoline on the other hand. Although the value of octane number will be reduced but this will have a positive impact on the environment as a way to produce clean fuel.


2021 ◽  
Vol 11 (15) ◽  
pp. 6992
Author(s):  
Tie Zhang ◽  
Yuxin Xing ◽  
Gaoxuan Wang ◽  
Sailing He

An optical system for gaseous chloroform (CHCl3) detection based on wavelength modulation photoacoustic spectroscopy (WMPAS) is proposed for the first time by using a distributed feedback (DFB) laser with a center wavelength of 1683 nm where chloroform has strong and complex absorption peaks. The WMPAS sensor developed possesses the advantages of having a simple structure, high-sensitivity, and direct measurement. A resonant cavity made of stainless steel with a resonant frequency of 6390 Hz was utilized, and eight microphones were located at the middle of the resonator at uniform intervals to collect the sound signal. All of the devices were integrated into an instrument box for practical applications. The performance of the WMPAS sensor was experimentally demonstrated with the measurement of different concentrations of chloroform from 63 to 625 ppm. A linear coefficient R2 of 0.999 and a detection sensitivity of 0.28 ppm with a time period of 20 s were achieved at room temperature (around 20 °C) and atmosphere pressure. Long-time continuous monitoring for a fixed concentration of chloroform gas was carried out to demonstrate the excellent stability of the system. The performance of the system shows great practical value for the detection of chloroform gas in industrial applications.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2020 ◽  
Vol 20 (5) ◽  
pp. 1513-1531 ◽  
Author(s):  
Oriol Rodríguez ◽  
Joan Bech ◽  
Juan de Dios Soriano ◽  
Delia Gutiérrez ◽  
Salvador Castán

Abstract. Post-event damage assessments are of paramount importance to document the effects of high-impact weather-related events such as floods or strong wind events. Moreover, evaluating the damage and characterizing its extent and intensity can be essential for further analysis such as completing a diagnostic meteorological case study. This paper presents a methodology to perform field surveys of damage caused by strong winds of convective origin (i.e. tornado, downburst and straight-line winds). It is based on previous studies and also on 136 field studies performed by the authors in Spain between 2004 and 2018. The methodology includes the collection of pictures and records of damage to human-made structures and on vegetation during the in situ visit to the affected area, as well as of available automatic weather station data, witness reports and images of the phenomenon, such as funnel cloud pictures, taken by casual observers. To synthesize the gathered data, three final deliverables are proposed: (i) a standardized text report of the analysed event, (ii) a table consisting of detailed geolocated information about each damage point and other relevant data and (iii) a map or a KML (Keyhole Markup Language) file containing the previous information ready for graphical display and further analysis. This methodology has been applied by the authors in the past, sometimes only a few hours after the event occurrence and, on many occasions, when the type of convective phenomenon was uncertain. In those uncertain cases, the information resulting from this methodology contributed effectively to discern the phenomenon type thanks to the damage pattern analysis, particularly if no witness reports were available. The application of methodologies such as the one presented here is necessary in order to build homogeneous and robust databases of severe weather cases and high-impact weather events.


The importance of the investigation here entered into,—inasmuch as it applies to most of the operations of nature as well as art,—appears so manifest, that we shall not recapitulate what the author advances on that subject. Before he proceeds to the detail of his experiments for the purpose of computing the emissions of heat from various bodies under a variety of circumstances, he finds it necessary to premise a minute description of the principal part of the apparatus he contrived for his purpose. This instrument consists of a hollow cylindrical vessel of brass, four inches long, and as many in diameter. It is closed at both ends; but has at one end a cylindrical neck about eight-tenths of an inch in diameter, by which it is occasionally filled with water of different temperatures, and through which also a thermometer, constructed for the purpose, is occasionally introduced, in order to ascertain the changes of temperature in the fluid. As it was in the first instance only meant to observe the quantity of heat that escapes through the sides of the vessel, two boxes were contrived, filled and covered with non-conducting substances, such as eiderdown, fur, &c., which were fitted to the two ends or flat surfaces of the cylinder. Six of these instruments, with proper stands, and auxiliary implements of obvious construction, were prepared for the sake of comparative experiments. A previous trial was made with two of the cylinders, the vertical polished sides of the one being naked, and those of the other covered with one thickness of fine white Irish linen, strained over the metallic surface. Here it was found, contrary to expectation, that in a certain space of time the covered cylinder had lost considerably more heat than the naked one.


2013 ◽  
Vol 03 (08) ◽  
pp. 01-10
Author(s):  
Majid Delavari ◽  
Nadiya Gandali Ali khani ◽  
Esmaeil Naderi

Crude oil as one of the main sources of energy is also the main source of income for members of OPEC. So, the volatility of crude oil price is one of the main economic variables in the world and analysis of the effect of its changes on key economic factors has been always considered as significant. The reason might be the high sensitivity of oil price to political, economic and cultural issues worldwide and consequently its volatility on the one hand, and the high influence of the volatile prices on macroeconomic variables. On the other hand, for different reasons such as oil price volatilities and income from oil export, economic planners and policy makers in Iran have been mainly focused on the promotion of non-oil exports especially during the last few decades. Therefore, methanol as one of the most commonly used petrochemical products has a high potential for production and export of non-oil products in Iran. For this reason, in the present study there was an attempt to examine the relationship between the prices of Iran’s crude oil and methanol using FIGARCH model and based on the weekly time series data related to the research variables. The results of the study showed that the long memory parameter is equal to 0.32 which is meaning the shocks caused by volatility of methanol market and crude oil price to the methanol price were lasting and meaningful and were revealed in the long term.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950084 ◽  
Author(s):  
Jilong Wang ◽  
Siheng Su ◽  
Jingjing Qiu ◽  
Shiren Wang

In this paper, a novel and facile method to achieve fluorescent nanosized-diamond based nanowire (NW) is reported. One-dimensional (1D) organic NW has received tremendous attention due to its superior chemical functionality and size-, shape-, and material-dependent properties. In addition, nanosized-diamond is comprehensively studied and investigated due to superior tunable fluorescent properties, cost-effectiveness, facile manufacturing and high biocompatibility. Through thermal treatment, sulfur-modified nanosized-diamond was fabricated by mixing oxidized nanosized-diamond and dibenzyl disulfide at 900∘C. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and zeta potential were employed to characterize sulfur-modified nanosized-diamond. After that, porous anodic aluminum oxide template-assisted cathodic electrophoretic deposition method was used to achieve sulfur-modified nanosized-diamond NW. Scanning electron microscopy and transmission electron microscopy were applied to present the one-dimensional structure of the NWs. The optical properties of sulfur nanosized-diamond NW were characterized via ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Finally, the as-synthesized sulfur-modified nanosized-diamond NW-based optical sensor was fabricated to detect vitamin B[Formula: see text] with high sensitivity and selectivity.


Author(s):  
Yoshiteru Amemiya ◽  
Tomoya Taniguchi ◽  
Takeshi Ikeda ◽  
Masataka Fukuyama ◽  
Akio Kuroda ◽  
...  

2018 ◽  
Vol 43 (3-4) ◽  
pp. 286-299 ◽  
Author(s):  
Osman Asheri ◽  
Sayyed Mostafa Habibi-Khorassani ◽  
Mehdi Shahraki

The kinetics of the reaction between para-substituted anilines and dimethyl acetylenedicarboxylate (DMAD) with derivatives of benzaldehyde for the one-pot formation of 3,4,5-substituted furan-2(5 H)-ones in the presence of lactic acid as a catalyst have been studied spectrophotometrically at different temperatures. A mechanism involving four steps was proposed for the reactions, all of which followed second-order kinetics. The partial orders with respect to substituted aniline and DMAD were one and one and the reactions revealed zero-order kinetics for benzaldehyde and its derivatives. Changing of substituents on benzaldehyde left rates of reaction unaffected. However, various substituents on aniline showed that para electron-withdrawing groups decreased the rate of reaction. According to investigation of an isokinetic relationship, a common mechanism exists for all studied substituents and a general mechanism can be formulated. Kinetic values ( k and Ea) and associated activation parameters (Δ G‡, Δ S‡ and Δ H‡) of the reactions were determined.


Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 118
Author(s):  
Meiqing Chen ◽  
Yangdong Zhang ◽  
Fengen Wang ◽  
Nan Zheng ◽  
Jiaqi Wang

The determination of C18 fatty acids (FAs) is a key and difficult aspect in FA profiling, and a qualified method with good chromatographic separation and high sensitivity, as well as easy methylation, is required. A GC-MS method was established to simultaneously determine C18 FAs in milk. To simplify the methylation protocol for milk samples, besides a base-catalyzation methylation (50 °C for 20 min), the necessity of an additional acid-catalyzation was also studied using different temperatures (60 °C, 70 °C, 80 °C, and 90 °C) and durations (90 min and 150 min). The results showed that the chromatographic resolution was improved, although three co-eluted peaks existed. The base-catalyzation was sufficient, and an additional acid-catalyzation was not necessary. The proposed method was validated with good sensitivity, linearity, accuracy, and precision, and then applied in determining C18 FAs in 20 raw milk and 30 commercial milk samples. UHT milk presented a different profile of C18 FAs from raw milk and PAS milk samples, which indicated that excessive heating could change the profile. Overall, the proposed method is a high-throughput and competent approach for the determination of C18 FAs in milk, and which presents an improvement in chromatographic resolution and sensitivity, as well as a simplification of methylation.


Sign in / Sign up

Export Citation Format

Share Document