The Effects of Carbon Black and Calcium Carbonate as a Filler on Cure Characteristic and Physical Properties of SBR/CRr Blends

2013 ◽  
Vol 594-595 ◽  
pp. 867-871 ◽  
Author(s):  
Ahmad Azmi Azrem ◽  
N.Z. Noriman ◽  
M.N. Razif

Filler are compounding ingredients added to a rubber compound for the purpose of iether reinforcing or cheapening the compound. Despite that, fillers can also be used to modify the physical properties of both unvulcanized and vulcanized rubbers. Typically filler materials include carbon black, calcium silicate, calcium carbonate and clay [. The mechanism of reinforcement of elastomers by fillers has been reviewed by several workers. They considered that the effect of filler is to increase the number of chains, which share the load of a broken polymer chain. It is known that in the case of filled vulcanizates, the efficiency of reinforcement depends on a complex interaction of several filler related parameters. They include particle size, particle shape, particle dispersion, surface area, surface reactivity, structure of the filler and the bonding quality between the filler and the rubber matrix [.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 123
Author(s):  
Steven C. Peterson

Recent discoveries have shown that calcium carbonate and soy protein interactions can be used to reinforce rubber composites with improvements on the effective crosslink density and moduli. However, the method to incorporate the soy protein into the rubber matrix may be costly to scale up, since it involves microfluidization and drying steps prior to rubber compounding. In this work, a simpler process involving dry-milled calcium carbonate and soy protein was used to explore filler blends of calcium carbonate, soy protein, biochar, and carbon black. By blending these filler materials in various ratios, rubber composite samples with 40–50% of the carbon black replaced by sustainable alternatives were made. These composites had essentially the same tensile strength, with better toughness and elongation properties relative to the carbon black control. These composites would reduce dependence on petroleum and be more amenable to the rubber composite compounding infrastructure.


2006 ◽  
Vol 79 (4) ◽  
pp. 653-673 ◽  
Author(s):  
Atsushi Kato ◽  
Junichi Shimanuki ◽  
Shinzo Kohjiya ◽  
Yuko Ikeda

Abstract Usual rubber products are a composite from rubber and nano-filler (e.g. carbon black, silica, etc.), and it is believed that the good dispersion of the nano-filler is the most important issue determining the performance of rubber vulcanizates. So far, transmission electron microscopy (TEM) has been the most useful tool for evaluation of the dispersion. However, it affords images of the sample projected on an x, y-plane, and the information along the thickness (z-axis) direction is missing. Three-dimensional (3D) visualization of nanometer structure of nano-filler dispersion in a rubber matrix is what all rubber technologists have been dreaming of. This dream is at last realized, and described in this paper. Use of TEM combined with computerized tomography (abbreviated as 3D-TEM in this paper, which is sometimes called electron tomography) enabled us to reconstruct 3D images of nano-filler aggregates in rubbery matrix. The 3D-TEM results on carbon black in natural rubber were presented in this paper. The network structure formed by agglomeration of carbon black aggregates was elucidated by combining the 3D images and physical properties of the vulcanizates. Density, electrical resistivity and dielectric relaxation of carbon black loaded natural rubber as an example of physical properties, were measured, and explained by the structure elucidated by 3D-TEM. This technique will prove to be more and more important for the rational design of the nano-composites of rubbery matrix.


2021 ◽  
Author(s):  
Vitor Peixoto Klienchen de Maria ◽  
Fábio Paiva ◽  
Flávio Camargo Cabrera ◽  
Carlos Toshiyuki Hiranobe ◽  
Gabriel Deltrejo Ribeiro ◽  
...  

Abstract The present research aimed to develop natural rubber (NR) hybrid composites reinforced with treated ultrafine calcium carbonate/carbon black (CC/CB). The influence of CC/CB with various filler ratios (50/0, 40/10, 30/20, 20/30, 10/40 and 0/50) on mechanical properties and cure characteristics of the vulcanizates was investigated and their reinforcing efficiency was compared aiming to achieve the best ratio for CB partial substitution as compared to composites with CC and CB incorporated separately. The CC30/CB20 composites reached around to 17 MPa similar strength at break response compared to CC0/CB50 (16.83 MPa). Elongation at break increased 48% in relation to CC0/CB50. Hardness maintain similar values compare to high concentration of CB composites. Crosslink density results revealed similar chain number in rubber matrix representing better interaction between CC/CB. Scanning electron microscopy studies also reveal a good filler dispersion between filler particles and matrix. The results shown that the new material can be an alternative filler for partial substitution of CB conserving mechanical properties.


2020 ◽  
pp. 000-000 ◽  
Author(s):  
Il Jin Kim ◽  
Byungkyu Ahn ◽  
Donghyuk Kim ◽  
Hyung Jae Lee ◽  
Hak Joo Kim ◽  
...  

ABSTRACT The physical properties of rubber compounds are mainly determined by the filler dispersion within the rubber matrix, filler–rubber interaction, and chemical crosslink structure caused by sulfur. Carbon black or silica is typically used as a reinforcing filler in tire tread compounds; however, binary filler systems comprising the two types of filler are also currently being used to complement each other. This study used binary filler systems to manufacture vulcanizates and classified the vulcanizate structures as chemical crosslinks caused by sulfur, physical crosslinks caused by carbon black (carbon black–bound rubber), and silica–silane–rubber networks caused by silica and silane. The effect of each vulcanizate structure on the physical properties was also calculated. In the proposed binary filler system, silica chemically bonds with rubber molecules, unlike carbon black. Therefore, the crosslink density per unit of silica content was 19% higher than that of carbon black, in which rubber molecules were physically adsorbed on the surface. Tensile properties affected by 1 unit of crosslinking density for each filler were calculated, and silica was found to contribute more in the low-elongation range, whereas carbon black contributed more in the high-elongation range. Regarding tan δ at 60 °C and abrasion resistance per unit crosslink density of filler, carbon black made a greater contribution than silica, whereas silica had a greater contribution to wet traction and snow traction.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2021 ◽  
pp. 0734242X2110047
Author(s):  
Junqing Xu ◽  
Jiaxue Yu ◽  
Wenzhi He ◽  
Juwen Huang ◽  
Junshi Xu ◽  
...  

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


1928 ◽  
Vol 1 (3) ◽  
pp. 458-464
Author(s):  
D. J. Beaver ◽  
T. P. Keller

Abstract The data presented herein show that in general the presence of oxygen on carbon black retards the rate of vulcanization in direct proportion to the amount of oxygen present and also decreases the maximum physical properties obtainable with a given amount of accelerator. The aging data show that the presence of this oxygen on the black increases the rate of aging as the amount of oxygen increases, but not in direct proportion to the per cent of this oxygen present. It can be concluded, therefore, that compounds which contain a small amount of oxygen, such as thermatomic, G black, or acetylene black, will give better aging stocks than compounds containing higher amounts of oxygen such as lampblack and standard channel blacks. No correlation could be found between the acetone extract, iodine adsorption, or oil adsorption, and the effect of these blacks on the rate of cure or aging.


Sign in / Sign up

Export Citation Format

Share Document