Production of Ceramic Materials Using only Waste as Raw Materials

2015 ◽  
Vol 663 ◽  
pp. 62-71 ◽  
Author(s):  
R.J. Galán-Arboledas ◽  
Salvador Bueno

From a selection of inorganic industrial waste (screen glass, steelworks ashes, coal power plant ashes, biomass power plant ash and sludge from cutting marble industry) and a waste with organic fraction (diatomaceous earth from oil filtration) it is expected to obtain ceramic materials with properties similar to those of ceramic materials used in construction and porous materials with thermal insulating capability. The ternary phase equilibrium diagram SiO2-Al2O3-CaO has been used as the main tool for the formulation of these materials. The dynamic sintering study was carried out using dilatometry techniques (DIL), thermo gravimetric analysis and differential scanning calorimetry (TG-DSC). Characterization of the manufactured material allows determining a set of basic technological properties such as fired bulk density, water absorption capacity and bending strength, in addition to thermal conductivity and microstructure by SEM-EDX, in order to obtain the necessary data to determine technical feasibility.

Cerâmica ◽  
2020 ◽  
Vol 66 (380) ◽  
pp. 413-420
Author(s):  
L. M. S. e Silva ◽  
R. S. Magalhães ◽  
W. C. Macedo ◽  
G. T. A. Santos ◽  
A. E. S. Albas ◽  
...  

Abstract Recycling has been pointed out as an alternative to the disposal of waste materials in industrial landfills. In the present study, the transformation of residues (discarded foundry sand - DFS, grits, and lime mud) in glass-ceramic materials is shown. The glasses were obtained by the melting/cooling method. The precursor materials, glasses, and glass-ceramics were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and differential scanning calorimetry/thermal gravimetric analysis (DSC/TGA). The glassy materials were milled, pelleted, and thermally treated at the crystallization temperatures given by DSC data to obtain the glass-ceramics (885, 961, and 1090 ºC). The main formed phases were cristobalite, α-wollastonite (parawollastonite), and β-wollastonite (pseudowollastonite). The glass-ceramics showed very low water absorption and apparent porosity (0.26 to 0.88 wt% and 0.66 to 1.77 vol%, respectively). The results confirmed that the studied residues can be used as raw materials for the manufacture of vitreous and glass-ceramic materials.


2011 ◽  
Vol 332-334 ◽  
pp. 339-342
Author(s):  
Wei Wei Peng ◽  
Na Han ◽  
Xiao Fen Tang ◽  
Hai Hui Liu ◽  
Xing Xiang Zhang

In this study, a 85/15 AN/MA copolymer (acrylonitrile – methylacrylate copolymer with feed ratio of 85/15 mol%) was synthesized by emulsion polymerization at 60 °C, and then the copolymer was used to produce hollow fiber (abbreviated as PAN hollow fiber )by melt spinning using a single screw extruder machine. The PAN hollow fiber was characterized by using Scanning Electron Microscope (SEM), Thermo-gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The hollow fiber of melt-spinning PAN with high hollow rate of 51.1% has a homogeneous wall and regular section. The hollow fiber is potentially used as raw materials to fabricate heat preservation fabric for comfort clothing.


2011 ◽  
Vol 197-198 ◽  
pp. 1049-1052
Author(s):  
Yuan Sun ◽  
Xiu Juan Zhao ◽  
Guo Jun Li ◽  
Rui Ming Ren

The olivine-type LiFePO4powder was prepared by a chemical method using the synthesized FePO41.78H2O, LiOH, citric acid and PEG as raw materials. The synthesized FePO41.78H2O precursor powder was obtained by co-precipitation method. LiFePO4powder was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC). The results showed that the calcined LiFePO4was in a single phase when fabricated by using the synthesized FePO41.78H2O powder at pH of 3.5 in argon atmosphere.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 511
Author(s):  
Roman Réh ◽  
Ľuboš Krišťák ◽  
Ján Sedliačik ◽  
Pavlo Bekhta ◽  
Monika Božiková ◽  
...  

The potential of using ground birch (Betula verrucosa Ehrh.) bark as an eco-friendly additive in urea-formaldehyde (UF) adhesives for plywood manufacturing was investigated in this work. Five-ply plywood panels were fabricated in the laboratory from beech (Fagus sylvatica L.) veneers bonded with UF adhesive formulations comprising three addition levels of birch bark (BB) as a filler (10%, 15%, and 20%). Two UF resin formulations filled with 10% and 20% wheat flour (WF) were used as reference samples. The mechanical properties (bending strength, modulus of elasticity and shear strength) of the laboratory-fabricated plywood panels, bonded with the addition of BB in the adhesive mixture, were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical strength of the plywood with the addition of BB in the adhesive mixture is acceptable and met the European standard requirements. Markedly, the positive effect of BB in the UF adhesive mixture on the reduction of formaldehyde emission from plywood panels was also confirmed. Initially, the most significant decrease in formaldehyde release (up to 14%) was measured for the plywood sample, produced with 15% BB. After four weeks, the decrease in formaldehyde was estimated up to 51% for the sample manufactured with 20% BB. The performed differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the findings of the study. As this research demonstrated, BB as a waste or by-product of wood processing industry, can be efficiently utilized as an environmentally friendly, inexpensive alternative to WF as a filler in UF adhesive formulations for plywood manufacturing.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Sakvai Mohammed Safiullah ◽  
Deivasigamani Thirumoolan ◽  
Kottur Anver Basha ◽  
K. Mani Govindaraju ◽  
Dhanraj Gopi ◽  
...  

Abstract The synthesis of copolymers from different feed ratios of N-(p-bromophenyl)-2- methacrylamide (PBPMA) and glycidyl methacrylate (GMA) was achieved by using free radical solution polymerization technique and characterized using FT-IR, 1H and 13C NMR spectroscopy. The thermal stability of the synthesized copolymers was studied using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular weight of the copolymer is determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens dip coated with different composition of copolymers were investigated in 0.5 M H2SO4 using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the low nickel stainless steel surfaces. However, it is observed that the mole ratio of PBPMA and GMA plays a major role in the protective nature of the copolymer.


2019 ◽  
Vol 41 (3) ◽  
pp. 388-388
Author(s):  
Khalid Saeed Khalid Saeed ◽  
Tariq Shah and Ahmad Hassan Tariq Shah and Ahmad Hassan

Effect of graphene nanoplates (GNPs) on the properties of Nylon 6,6 (Nyl 6,6) is investigated in present study. The morphological studies presented that the GNPs were dispersed inside the Nyl 6,6 matrix. The thermo gravimetric analysis (TGA) illustrated that the thermal degradation of nanocomposites samples were started at the range of 350-393 oC, which was appreciably higher than neat Nyl 6,6 (360 oC). The differential scanning calorimetry (DSC) analyses revealed that the crystallization temperature (Tc) of GNPs/Nyl 6,6 increased as increased the addition of GNPs, which might be due to the nucleation effect of GNPs. The mechanical properties of Nyl 6,6 was enhanced by incorporation of GNPs upto the addition of an optimal quantity of filler (5%wt GNPs) into the polymer matrix. The stress yield and Young’s modulus of 5%wt GNPs/Nyl 6,6 was 96.79 and 1.54, N/nm2, respectively. Both Nyl 6,6 and nanocomposites samples were also used for the adsorption of Neutral red chloride (NRC) dye, which significantly remove the dye from the aqueous solution. The neat nylon 6,6 and GNPs (5 and 10 wt%)/Nyl 6,6 adsorbed about 88.49, 93.15, and 93.60% within 2 h, respectively.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2230
Author(s):  
Nontsikelelo Noxolo Tafu ◽  
Victoria A. Jideani

Moringa oleifera leaf powder (MOLP) has been identified as the most important functional ingredient owing to its rich nutritional profile and healthy effects. The solubility and functional properties of this ingredient can be enhanced through solid dispersion technology. This study aimed to investigate the effects of polyethylene glycols (PEGs) 4000 and 6000 as hydrophilic carriers and solid dispersion techniques (freeze-drying, melting, solvent evaporation, and microwave irradiation) on the crystallinity and thermal stability of solid-dispersed Moringa oleifera leaf powders (SDMOLPs). SDMOLPs were dully characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The PXRD results revealed that the solid dispersions were partially amorphous with strong diffraction peaks at 2θ values of 19° and 23°. The calorimetric and thermogravimetric curves showed that PEGs conferred greater stability on the dispersions. The FTIR studyrevealed the existence of strong intermolecular hydrogen bond interactions between MOLP and PEG functional groups. MOLP solid dispersions may be useful in functional foods and beverages and nutraceutical formulations.


2021 ◽  
pp. 1-8
Author(s):  
Ching-Cheng Huang

BACKGROUND: The biologic scaffolds derived from decellularized tissues and organs have been successfully developed in a variety of preclinical and/or clinical studies. OBJECTIVE: The new decellularized liver-regenerative 3D printing biomaterials were designed and prepared for cell-based liver therapies. METHODS: An extraction process was employed to remove the tissue and cellular molecules from porcine liver via pretreatment of supercritical fluid of carbon dioxide (ScCO2). Varying porosities of the decellularized liver tissues were created using papain-containing reagent treatments after ScCO2. RESULTS: The resulting liver-regenerative 3D printing biomaterials of decellularized liver collagen scaffolds were characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, differential scanning calorimetry and scanning electron microscopy. CONCLUSIONS: The decellularized liver collagen scaffolds with good thermal stability (>150 °C) were obtained and employed as liver-regenerative 3D printing biomaterials for cell-based liver therapies.


Author(s):  
Л.В. АНТИПОВА ◽  
С.А. ТИТОВ ◽  
И.В. СУХОВ

Исследовано взаимодействие коллагена пресноводных рыб с водой для повышения его водопоглощающей способности. Объектом исследования был вторичный продукт переработки рыбного сырья – шкуры прудовых рыб, преимущественно толстолобика. Для исследования были использованы методы термогравиметрии и дифференциальной сканирующей калориметрии. Измерения проведены на приборе синхронного термического анализа модели STA 449 F3 Jupiter. Установлено, что основная доля влаги связывается адсорбционным или осмотическим путем, а на долю капиллярной влаги приходится всего 7% массы воды, связанной образцами. Большая величина энергии связи адсорбции – 4 Дж/моль свидетельствует о способности функциональных групп коллагена к созданию гидратной оболочки, содержащей значительное количество воды. Для увеличения влагопоглощающей способности необходимо разрыхление коллагеновых волокон, что увеличивается свободный доступ влаги к фибриллам белка, увеличивающим впитывание влаги. Для эффективного разрыхления предложено выдерживать шкуры толстолобика в растворе органических кислот концентрацией 0,5%. Это позволяет добиться высокой влагоемкости, которая достигает 35–40 объемов влаги на 1 единицу массы исследуемого материала, что делает перспективным использование коллагена в качестве материала для впитывающих влагу слоев средств личной гигиены, одежды, обуви. The interaction of freshwater fish collagen with water to increase its water absorption capacity was studied. The secondary product of processing of fish raw materials – skins of pond fish, mainly silver carp, was the object of study. Methods of thermogravimetry and differential scanning calorimetry were used for the study. Measurements were carried out on the device of synchronous thermal analysis of model STA 449 F3 Jupiter. It was found that the bulk of the moisture is bound by adsorption or osmotic way, and 7% of mass of the water connected by samples fall to the share of capillary moisture. A large amount of adsorption binding energy – 4 J/mol indicates the ability of collagen functional groups to create a hydrated shell containing a significant amount of water. Loosening of collagen fibers is necessary to increase the moisture absorption capacity, which will increase the free access of moisture to the protein fibrils, increasing the absorption of moisture. It is proposed to withstand the skins of silver carp in a solution of organic acids with a concentration of 0,5% for effective loosening. This makes it possible to achieve high moisture capacity, which reaches 35–40 volumes of moisture per 1 unit mass of the test material, which makes it promising to use collagen as a material for moisture-absorbing layers of personal hygiene products, clothing, and shoes.


Sign in / Sign up

Export Citation Format

Share Document