Semi-Sintered Medical Zirconia Ceramic Used for Denture CAM Processing

2016 ◽  
Vol 693 ◽  
pp. 597-604
Author(s):  
Xiao Bao Lei ◽  
Feng Xie

CAD/CAM technology has been widely applied in the field of oral restoration, which creates a revolutionary change in the pattern of traditional handmade denture and puts forward new demands on the past medical dental restorative material. The materials used for making dentures should own good machining properties and biocompatibilities. Medical zirconium ceramic have a broad prospect in the field of oral restoration because of its features are high strength, high toughness, good biocompatibility, high similarity of performance and aesthetic effect of processed dentures to real dentals. Dental restoration was obtained initially by NC machining using the feature that zirconium ceramic was not fully hardened but had a definite range of strength in the semi-sintered state. Experimental results shown that the ceramic denture machined by this processing has better surface quality and can satisfy requirements of oral restoration. Observation results shown that cutting surfaces were smooth, grinding cracks were tiny and uniform, and there were no obvious fracture gaps on edges and complex irregular surface of neck could be better reflected.

2021 ◽  
Author(s):  
khaled Bataineh ◽  
assem Al Alkarasneh

Abstract Objective The purpose of this study is to estimate the fatigue life of five polycrystalline zirconia CAD/CAM ceramic materials used for posterior restoration. This study presents the first time methodology to translate raw data obtained from laboratory test into useful data to predict the clinical life of dental restoration. Methods A typical model for the first molar restored crown is built and transferred into finite element software ANSYS 18.1 flor execution FEA. The materials are: two Y-TZP zirconia (LAVA (LVs), and EVEREST (KVs); IPS e.max CAD; Suprinity PC; and Celtra Duo. Two types of loads are applied, axial load and axial load followed by the sliding motion of lower jaw. The fatigue resistance of various restorative materials is determined. Results Experimental findings show that all the samples have fractured between cusps at the same location, which is slightly off the symmetry fissure plane. For crowns made of LAVA and EVEREST, the life is longer than 10 years under an axial load of 1000 N, while the lives for IPS e.max CAD; Suprinity PC; and Celtra Duo were longer than 10 years under an axial load of 185 N. The life of all-ceramic crown materials was predicted by FEA and found to conform to previous experimental and clinical observations. Conclusion Crowns made of Y-TZP zirconia has superior fatigue resistance compared to other ceramic CAD/CAM materials.


2017 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
Meita Andriyani ◽  
Sonya Harwasih ◽  
Eny Inayati

Background :  Ceramic is superior in aesthetic but fragile and breakable under bite pressure . Lack of understanding of material requirements for resistance in the oral cavity and minimal ceramic processing techniques is the initial cause of the failure. Hybrid ceramic dental restoration is a material that combines the good properties of ceramics and composites that have elasticity and ensures high strength and minimize the wall thickness of the restoration. Mechanical manufacture of dental restorations currently growing, CAD CAM systems are becoming popular in the field of dentistry. CAD CAM provides the advantage that the effectiveness of the time, does not require a lot of human resources, and produce a restoration with good quality. Purpose:  To explain hybrid ceramic material and techniques of making  hybrid ceramic dental restorations with CAD CAM system. Review: Hybrid ceramic is a material that combines the advantages of ceramics and composite elasticity. This material contains a hybrid structure with two networks, ceramic and polymer are linked to each other, known as double hybrid network. It added that the structure of the ceramic feldspathic network (86% wt) is reinforced by a polymer network (14% wt) are integrated as a polymer network filling cavities that exist in the network and make its structure ceramic hybrid ceramic material becomes denser. Conclusion: Hybrid ceramic having chewing load capacity and high elasticity, flexural strength  150-160 Mpa and fracture toughness 1.5 Mpa, higher than conventional ceramics. Mechanical manufacture of dental restorations using ceramic hybrid materials with CAD CAM method begins with scanning, selection of materials and tooth shade, designing, milling, followed by finishing, polishing, ends with staining and glazing.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 19417-19429 ◽  
Author(s):  
Kai Wang Chan ◽  
Cheng Zhu Liao ◽  
Hoi Man Wong ◽  
Kelvin Wai Kwok Yeung ◽  
Sie Chin Tjong

The WST-1 assay shows that the PEEK/15 vol% nHA–1.9 vol% CNF hybrid composite has excellent biocompatibility.


2010 ◽  
Vol 177 ◽  
pp. 447-450 ◽  
Author(s):  
Xin Zhang ◽  
Yi Wen Hu ◽  
Yin Wu ◽  
Wen Jie Si

The purpose of this study was to evaluate the crystal phase formation behavior and its influence on the mechanical properties of LiO2-SiO2-P2O5 glass-ceramics system. High temperature XRD was used to analyze the crystal phase formation in situ. The crystalline phases in the material both before and after heat-treatment were also analyzed. The flexural strength was measured by three-point bending test according to ISO 6872:2008(E). The SEM analysis showed that the high strength of the glass-ceramics is attributed to the continuous interlocking microstructure with fine lithium disilicate crystallines.


2021 ◽  
Vol 875 ◽  
pp. 373-378
Author(s):  
Ali Haider ◽  
Omar Farooq Azam ◽  
Muhammad Talha ◽  
Saleem Akhtar

Restorative material is a class of dental materials used for direct filling and fabrication of indirect restoration. NiCr alloy is a restorative material frequently used for dental prostheses due to its properties and economic reasons. In present work beryllium free NiCrMo alloy was developed and studied for dental restoration application. The alloy have unique characteristics of resistance to oxidation and biocompatibility; the requisites for dental prostheses. NiCrMo alloy is found to possess mechanical strength and fabrication properties suitable for dental repairs. In this study the developed alloy was tested for its mechanical properties, biocompatibility and corrosion resistance. An in-vitro biocompatibility study was carried out. No signs of toxicity and no signs of cell growth inhibition, in presence of NiCrMo alloy specimen, were observed. Mechanical properties and corrosion resistance are found in the range that is suitable for dental prostheses and easy fabrication.


MRS Advances ◽  
2016 ◽  
Vol 1 (17) ◽  
pp. 1233-1239 ◽  
Author(s):  
Ke Han ◽  
Rongmei Niu ◽  
Jun Lu ◽  
Vince Toplosky

ABSTRACTOne important approach to increasing High magnetic fields (HMF) beyond what is now possible is to improve the properties of various composite materials used as both conductors and structural support. Typical conductors for high field magnets are Cu-based metal-metal composites. To achieve high mechanical strength, these composites are fabricated by cold deformation, which introduces high densities of interfaces along with lattice distortions. During the operation of a magnet, mechanical load, high magnetic field, extreme temperatures and other stressors are imposed on the materials, causing them to be further “processed”. The composite conductors in a magnet, for example, may undergo high temperatures, which reduce lattice distortions or soften the material. At the same time, HMF may increase lattice distortion, leading to a complex change in interface characteristics. Both the mechanical properties of the conductors, like the tensile and yield strength, and the electric conductivity of the composites are closely connected to changes in lattice distortion and interface density. Understanding these changes helps us to assure that materials can operate in optimized conditions during most of magnets’ service life. Maximizing service life is critical, given the high cost of building and operating high field magnets. The goal of this paper is to 1) show our understanding of changes that occur in the properties of selected materials during the fabrication and under HMF and 2) to discuss how those changes relate to the microstructure of these materials and consequently to the service life of high field magnets.


2020 ◽  
Vol 987 ◽  
pp. 93-98
Author(s):  
Jun Yan Liu ◽  
Jin Guo Wang ◽  
Yun Hai Yu ◽  
Na Wang

Biodegradable vascular stent is mainly made of materials that can be naturally decomposed. After implantation into human blood vessels, the vascular stent can be continuously degraded over time and eventually disappear completely after the treated blood vessels are healed and support from the vascular stent is not needed. The vascular stent materials used in clinic should have good biocompatibility, which mainly involves blood compatibility and cell compatibility. In terms of cell compatibility, the influence of materials on cell growth should be observed. The various biological materials should have good anticoagulant character, so as to reduce the tendency of thrombosis and avoid the occurrence of various risk events in clinical treatment.


2020 ◽  
Vol 3 (2) ◽  
pp. 31-32
Author(s):  
Paul Brian S. Mendez ◽  
Rizalie N.E. Mibato

Dentistry has evolved from its origin to the present day, becoming almost entirely digitized and supervised. The digitalized dental laboratory saves time due to computer-aided design and computer-aided manufacture (CAD/CAM) technology, which will capture and display clients' tooth or teeth and gums on a 3D image on a computer screen sent to the lab.  It enables a dental lab technician to work faster and get the perfect design of the digital dental restoration. The main advantage of digitalization includes faster and improved efficiency on the turn-around time of devices, like crowns and bridges, and improved accuracy of procedures and manufactured gadgets. Digitalization Dental Laboratory (DDL) is the first to offer a digital dental lab in the city of Bacolod. The service allows laboratories to design the prosthesis digitally from in-house CAD software and email the design data provider or download the data file into a proprietary web host or server. The lab will cater to the digital needs of dental patients of the Multi-Specialty Dental Center (a sister company of DDL) and other dental clients.


Sign in / Sign up

Export Citation Format

Share Document