Pyrolysis of Palm Oil in a Continuous Flow Microchannel Reactor

2017 ◽  
Vol 757 ◽  
pp. 166-170
Author(s):  
Kodchakon Kun-Asa ◽  
Lalita Attanatho ◽  
Prasert Reubroycharoen

Palm oil is considered as a potential feedstock for biofuel production in Thailand due to its property and availability. In recent years, there has been an increased attention on upgrading of palm oil to biofuels using various technologies. One of the most promising technologies is pyrolysis, in which palm oil is heated at the temperature in the range of 400 to 500 °C under oxygen-free atmosphere. In the present study, the uncoated catalyst and coated catalyst pyrolysis processes of palm oil for biofuel production in a continuous flow microchannel reactor were investigated with various catalyst types (MgO, Al2O3) at 400-500 °C, 2 ml/hr palm oil flow rate, and 0.1 g of catalysts. Liquid product yield, solid product yield and gaseous product yield were determined. The obtained results revealed that the high triglyceride conversion could be achieved at a short reaction time in microchannel reactor, which attributed to the enhancement of both heat and mass transfer. The pyrolysis liquid products composed of hydrocarbons, free fatty acids, and other oxygenated compounds which are the results of triglyceride cracking. Furthermore, product selectivity of palm oil pyrolysis depended on temperature and catalyst type.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Yafei Shen

Abstract Pyrolysis has been considered as a promising thermochemical process that can convert biomass in nonoxidizing atmospheres to value-added liquid bio-oil, solid biochar, and noncondensable gas products. Fast pyrolysis has a better economic return because of the valuable biofuel production (e.g. bio-oil, syngas). Because of the complexity and heterogeneity of the feedstocks, the one-step pyrolysis often leads to the mixed, acidic, and highly oxygenated liquid products. Moreover, the downstream processes (e.g. deoxygenation) for the desired fuels require high costs on energy and catalysts consumption. Stepwise pyrolysis is defined as a temperature-programmed pyrolysis that can separately obtain the products from each temperature step. It is a feasible approach to accomplish the fractionation by optimizing the pyrolysis process based on the decomposition temperature ranges and products among the biomass constituents. In recent years, the stepwise pyrolysis technology has gained attentions in thermochemical conversion of complex organic solid wastes. Through the stepwise pyrolysis of a real waste, oxygenated and acidic products were concentrated in the first-step liquid product, whereas the second-step product normally contained a high portion of hydrocarbon with low acidity. The stepwise pyrolysis of biomass, plastics, and their mixtures is comprehensively reviewed with the objective of fully understanding the related mechanisms, influence factors, and challenges.


2017 ◽  
Vol 6 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Rondang Tambun ◽  
Oktris Novali Gusti ◽  
Muhammad Anshori Nasution ◽  
Rangga Pramana Saptawaldi

The depletion of fossil energy reserves raises the potential in the development of renewable fuels from vegetable oils. Indonesia is the largest palm oil producer in the world, where palm oil can be converted into biofuels such as biogasoline, kerosene and biodiesel. These biofuels are environmentally friendly and free of the content of nitrogen and sulfur through catalytic cracking process. In this research, palm olein is used as feedstock using catalytic cracking process. ZSM-5 is used as a catalyst, which has a surface area of 425 m2/g and Si/Al ratio of 50. Variables varied are the operating temperature of 375 oC - 450 C and reaction time of 60 minutes - 150 minutes. The result shows that the highest yield of liquid product is 84.82%. This yield is obtained at a temperature of 400 C and reaction time of 120 minutes. The yield of the liquid product in the operating conditions consisting of C6-C12 amounted to 19.47 %, C14-C16 amounted to 16.56 % and the C18-C28 amounted to 48.80 %.


MRS Advances ◽  
2020 ◽  
Vol 5 (26) ◽  
pp. 1349-1356
Author(s):  
Michael Commeh ◽  
David Dodoo-Arhin ◽  
Edward Acquaye ◽  
Isaiah Nimako Baah ◽  
Nene Kwabla Amoatey ◽  
...  

AbstractPlastics generally play a very important role in a plethora of industries, fields and our everyday lives. In spite of their cheapness, availability and important contributions to lives, they however, pose a serious threat to the environment due to their mostly non-biodegradable nature. Recycling into useful products can reduce the amount of plastic waste. Thermal degradation (Pyrolysis) of plastics is becoming an increasingly important recycling method for the conversion of plastic materials into valuable chemicals and oil products. In this work, waste Polyethylene terephthalate (PET) water bottles were thermally converted into useful gaseous and liquid products. A simple pyrolysis reactor system has been used for the conversions with the liquid product yield of 65 % at a temperature range of 400°C to 550°C. The chemical analysis of the pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The main constituents were 1-Tetradecene, 1-Pentadecene, Cetene, Hexadecane, 1-Heptadecene, Heptadecane, Octadecane, Nonadecane, Eicosane, Tetratetracontane, 1-Undecene, 1-Decene). The results are promising and can be maximized by additional techniques such as hydrogenation and hydrodeoxygenation to obtain value-added products.


2021 ◽  
Author(s):  
Hasret Akgün ◽  
Ece Yapıcı ◽  
Zerrin Günkaya ◽  
AYSUN ÖZKAN ◽  
Müfide Banar

Abstract Background In this study, pyrolysis of low-density polyethylene (LDPE) and LDPE with aluminum (C/LDPE) wastes was carried out with different heating rates (5-10-20°C/min) at different temperatures (400-600-800°C). The effect of temperature and heating rate on liquid product yield was investigated. Product yields of LDPE and C/LDPE wastes were compared, and optimum liquid products were analyzed to utilize as commercial waxes for future use. Methods To determine the parameters of pyrolysis wastes was investigated with proximate, elemental analysis, and TGA. The as-produced liquid from pyrolysis of wastes was characterized by different characteristic tools, such as elemental analyses, GC-MS analyzes, 1H-NMR tests, FT-IR spectra, the density, melting point, and carbon residue to compare commercial waxes. The characterization process was continued for the parameters with the optimum liquid products. Results As a result of pyrolysis, the highest liquid product yield was achieved at 800°C with 5°C/min heating rate (85.87 %), and at 600°C with 5°C/min heating rate (71.3 %) for LDPE and C/LDPE, respectively. The results indicated that the derived liquid products are similar to commercial heavy wax.


2020 ◽  
Vol 02 (03) ◽  
pp. e128-e132
Author(s):  
Shao-Zheng Guo ◽  
Zhi-Qun Yu ◽  
Wei-Ke Su

AbstractThe development of highly efficient C–C bond formation methods for the synthesis of ethyl 2-(2,4-dichloro-5-fluorobenzoyl)-3-(dimethylamino)acrylate 1 in continuous flow processes has been described, which is based on the concept of rapid and efficient activation of carboxylic acid. 2,4-Dichloro-5-fluorobenzoic acid is rapidly converted into highly reactive 2,4-dichloro-5-fluorobenzoyl chloride by treating with inexpensive and less-toxic solid bis(trichloromethyl)carbonate. And then it rapidly reacts with ethyl 3-(dimethylamino)acrylate to afford the desired 1. This process can be performed under mild conditions. Compared with the traditional tank reactor process, less raw material consumption, higher product yield, less reaction time, higher operation safety ensured by more the environmentally friendly procedure, and process continuity are achieved in the continuous-flow system.


2021 ◽  
Vol 128 (1) ◽  
Author(s):  
Sebastian Blauth ◽  
Christian Leithäuser ◽  
René Pinnau

AbstractWe consider the optimization of a chemical microchannel reactor by means of PDE-constrained optimization techniques, using the example of the Sabatier reaction. To model the chemically reacting flow in the microchannels, we introduce a three- and a one-dimensional model. As these are given by strongly coupled and highly nonlinear systems of partial differential equations (PDEs), we present our software package cashocs which implements the adjoint approach and facilitates the numerical solution of the subsequent optimization problems. We solve a parameter identification problem numerically to determine necessary kinetic parameters for the models from experimental data given in the literature. The obtained results show excellent agreement to the measurements. Finally, we present two optimization problems for optimizing the reactor’s product yield. First, we use a tracking-type cost functional to maximize the reactant conversion, keep the flow rate of the reactor fixed, and use its wall temperature as optimization variable. Second, we consider the wall temperature and the inlet gas velocity as optimization variables, use an objective functional for maximizing the flow rate in the reactor, and ensure the quality of the product by means of a state constraint. The results obtained from solving these problems numerically show great potential for improving the design of the microreactor.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2018 ◽  
Vol 34 ◽  
pp. 02054 ◽  
Author(s):  
N. Idris ◽  
N.A. Lutpi ◽  
Y. S. Wong ◽  
T.N. Tengku Izhar

This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.


2014 ◽  
Vol 548-549 ◽  
pp. 191-195 ◽  
Author(s):  
Zakiuddin Januri ◽  
Norazah Bt Abdul Rahman ◽  
Siti Shawalliah Idris ◽  
Sharmeela Matali ◽  
Shareena Fairuz Abdul Manaf

This paper reported on the product yield of automotive paint sludge via microwave assisted pyrolysis. By having an optimum weight sample loading and power level at 500g and 1000W respectively, optimum product in terms of liquid yields has been obtained. This desired liquid product comprised hydrocarbon material since it contains oil layer and almost 40% of the product can be recovered from the automotive paint sludge with an optimum microwave parameter. Furthermore, the liquid product has a potential to be used as fuel since it exhibit high energy content at 22.6 MJ/kg.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1362
Author(s):  
Boris N. Kuznetsov ◽  
Sergey V. Baryshnikov ◽  
Angelina V. Miroshnikova ◽  
Aleksandr S. Kazachenko ◽  
Yuriy N. Malyar ◽  
...  

For the first time, the fractionation of birch wood into microcrystalline cellulose, xylose and methoxyphenols is suggested based on the integration of alkali-acid pretreatments and hydrogenation in ethanol over a bifunctional Ru/C catalyst. It is established that removal of hemicelluloses during pretreatments of birch wood influences the yields of the liquid, gaseous and solid products of the non-catalytic and catalytic hydrogenation of pretreated samples in ethanol at 225 °C. The bifunctional Ru/carbon catalyst affects in different ways the conversion and yields of products of hydrogenation of the initial and acid- and alkali-pretreated birch wood. The most noticeable influence is characteristic of the hydrogenation of the acid-pretreated wood, where in contrast to the non-catalytic hydrogenation, the wood conversion and the yields of liquid products increase but the yields of the solid and gaseous products decrease. GC-MS, gel permeation chromatography and elemental analysis were used for characterization of the liquid product composition. The molecular mass distribution of the liquid products of hydrogenation of the initial and pretreated wood shifts towards the low-molecular range in the presence of the catalyst. From the GC-MS data, the contents of monomer compounds, predominantly 4-propylsyringol and 4-propanolsyringol, increase in the presence of the ruthenium catalyst. The solid products of catalytic hydrogenation of the pretreated wood contain up to 95 wt% of cellulose with the structure, similar to that of microcrystalline cellulose.


Sign in / Sign up

Export Citation Format

Share Document