Effect of Dipotassium Hydrogen Phosphate and Calcium Nitrate on Strength and Microstructural Properties of Geopolymer Mortar

2019 ◽  
Vol 821 ◽  
pp. 486-492
Author(s):  
Norbaizurah Rahman ◽  
Amalina Hanani Ismail ◽  
Andri Kusbiantoro

Adoption of coal fly ash (Class C) as the main source material for geopolymers would cause rapid setting to the fresh geopolymer mortar or concrete. This behaviour explained the limited application of this material in the construction industry. On the other hand, calcium nitrate (Ca (NO3)2) and dipotassium hydrogen phosphate (K2HPO4) are alternative admixtures that known to extend the setting time of fresh geopolymers. However, their effect on the strength and microstructural properties remain unclear due to the limitation of relevant literature from previous studies. Therefore, this study aims to investigate the effect of these admixtures in fly ash based geopolymer system, particularly to its strength performance. The effects of adding Ca (NO3)2 and K2HPO4 were evaluated at dosages of 0.5%, 1.5%, and 2.5% (by fly ash weight) in the geopolymer mixture, and samples were cured at room temperature. Hardened geopolymer specimens were measured for their compressive strength, porosity, and microstructural characteristic. The inclusion of 0.5% of alternative chemical reagents was found as the optimum proportion and able to enhance the compressive strength of the geopolymer mixtures. However, efflorescence was detected on the surface of the hardened specimen when K2HPO4 was included in its mixture. This phenomenon is influenced by the presence of monovalent and trivalent anions in the system namely nitrates and phosphates. In this study, each anion had a particular role in each stage of geopolymerisation, and determined the quality via crystal growth control and influenced the development of aluminosilicate structures.

2018 ◽  
Vol 765 ◽  
pp. 275-279 ◽  
Author(s):  
Norbaizurah Rahman ◽  
Andri Kusbiantoro ◽  
Khairunisa Muthusamy ◽  
Mohd Mustafa Al Bakri Abdullah

Disparity of anion and cation in geopolymer framework may result in the formation of efflorescence on the surface of hardened geopolymer specimen. The existence of efflorescence would be intensified with the use of dipotassium hydrogen phosphate (K2HPO4) as a chemical retarder for geopolymer mixture. In this study, paper mill sludge ash (PMSA) was used as a Ca-rich aluminosilicate source to reduce the development of efflorescence crystals. PMSA was utilized to partially replace fly ash at 5% and 10% (by weight of fly ash). Meanwhile, K2HPO4 was used as the external agent with various proportions, which were 0.1%, 0.3%, and 0.5% (by weight of fly ash). The external agent in this study was purposed to extend the setting time and enhance the mechanical properties of geopolymer. Fly ash and PMSA (if any) were activated by reacting them with 6M sodium hydroxide and sodium silicate solution. Freshly cast specimens were cured for 24 hours in electronic oven with the temperature setting of 30°C and 90°C. They were demoulded after 24 h and kept at room temperature (28±2 °C) until the testing day. Evaluation on the setting time characteristic of fresh geopolymer mortar was conducted with Vicat test while degree of reaction was performed on the hardened specimens to measure the reaction of fly ash during geopolymerization. Based on the experimental result, the inclusion of 5% PMSA shows the greatest effect in reducing the development of efflorescence crystal and increase the degree of reaction of geopolymer system. It is presumed that PMSA has altered the geopolymerization process by activating calcium oxide precursors to form three tetrahedral structures in the framework.


2020 ◽  
Vol 322 ◽  
pp. 01003
Author(s):  
Wei-Ting Lin ◽  
An Cheng ◽  
Michał Łach ◽  
Krzysztof Miernik ◽  
Kinga Korniejenko

This study aims to investigate the binding properties of co-fired fly ash (CFFA) in paste and mortar specimens. Paste specimens containing various CFFA proportions (25%, 50%, 75%, 100% by weight of cement) were conducted and evaluated using setting time tests, water demand tests and compressive strength tests. Mortar specimens containing various CFFA and Pulverised coal fly ash (PCFA) proportions (10%, 20%, 30% by weight of cement) were also conducted and compared with regard to flowability and compressive strength. The test results indicated that the water demand increased as the amount of CFFA replacement increased on the flow level at 110±3%; this is due to the higher ignition loss (L.O.I.). Higher L.O.I. values mean that there are more unburned carbon particles in the CFFA and that most of these carbon particles are porous. The compressive strength of mortar specimens decreased as the amount of CFFA replacement increased. Compared to the chemical compositions of cement (C3S, C2S), the main components of CFFA (Ca(OH)2, CaCO3, CaO) have lower crystalline strength and compactness. Therefore, the higher amount of CFFA replacement would inevitably cause a reduction of the cement contents of specimens, thereby reducing the compressive strength of the mortar specimens. Thus, an appropriate amount of superplasticiser and CFFA replacement in the mixture is useful with regard to the binding properties of cementitious materials.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


2012 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Biljana Angjusheva ◽  
Emilija Fidancevska ◽  
Vojo Jovanov

Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa) and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min). Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al)(Si,Al)2O6] was formed. Ceramics with optimal properties (porosity 2.96?0.5%, bending strength - 47.01?2 MPa, compressive strength - 170 ?5 MPa) was produced at 1100?C using the heating rate of 10?C/min.


2013 ◽  
Vol 438-439 ◽  
pp. 30-35 ◽  
Author(s):  
Nirdosha Gamage ◽  
Sujeeva Setunge ◽  
Kasuni Liyanage

The Victoria State of Australia has the second largest reserves of brown coal on earth, representing approximately 20% of the worlds reserves, and at current use, could supply Victoria with its energy for over 500 years. Its combustion, annually, yields up to 1.3 million tonnes of fly ash, which is largely use for land-fills. Disposal of fly ash in open dumps cause massive environmental problems such as ground water contamination that may create various health problems. This study focuses on the usability of brown coal fly ash to develop a sustainable building material. A series of laboratory investigations was conducted using brown coal fly ash combined with cement and aggregate to prepare cold pressed samples aiming to test their properties. Initial results indicate that compressive strength satisfies minimum standard compressive strength required for bricks or mortar.


1988 ◽  
Vol 136 ◽  
Author(s):  
Ashaari B. Mohamad ◽  
David L. Gress

ABSTRACTRefuse-derived-fuel (RDF) consisting mainly of waste paper and plastics is a viable fuel source for the production of power. An experimental test burn partially substituting coal with RDF was undertaken by the Public Service of New Hampshire at the Merrimack Power Station.Five percent and ten percent RDF were substituted, on a BTU basis, for coal in the test bums. The chemical and physical properties of the resulting fly ash were determined. Twelve test burn days were run with 4 days of 5% RDF and 8 days of 10% RDF. Emphasis was placed on investigating the effect of the RDF fly ash on Portland cement concrete.Most of the chemical and physical properties of the coal-RDF fly ash were found to be comparable with ordinary coal fly ash except for the amount of cadmium and lead, the pozzolanic activity index and the compressive strength of fly ash concrete. Cadmium and lead were at average levels of 5.1 ppm and 102.6 ppm for the 5% RDF, and 7.8 ppm and 198.3 ppm for the 10% RDF, respectively. Although the pozzolanic activity index of coal-RDF fly ash increases over normal coal fly ash, preliminary results show that the 28-day compressive strength of concrete with direct replacement of cement and sand decreases by up to 30%. Leaching tests on crushed concrete were conducted to evaluate the environmental effect of acid rain.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Zhang ◽  
Peixin Shi ◽  
Lijuan Chen ◽  
Qiang Tang

The electroplating sludge may pose serious threat to human health and surrounding environment without safe treatment. This paper investigated the feasibility of using electroplating sludge as subgrade backfill materials, by evaluating the mechanical properties and environmental risk of the cement-coal fly ash solidified sludge. In this study, Portland cement and coal fly ash are used to solidify/stabilize the sludge. After curing for 7, 14, and 28 days, the stabilization/solidification sludge specimens were subject to a series of mechanical, leaching, and microcosmic tests. It was found that the compressive strength increased with the increase of cement content, curing time, and the cement replacement by coal fly ash besides water content. Among these factors, the impact of water content on the compressive strength is most noticeable. It was observed that the compressive strength declined by 87.1% when the water content increased from 0% to 10%. Besides, leaching tests showed that the amount of leaching heavy metals were under the standard limit. These results demonstrated utilization of electroplating sludge in subgrade backfill material may provide an alternative for the treatment of electroplating sludge.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


Sign in / Sign up

Export Citation Format

Share Document