Fabrication and Experimental Investigation on Tensile and Flexural Properties for Different Stacking Sequence of Jute and Carbon Fiber Reinforced Epoxy Composite

2020 ◽  
Vol 858 ◽  
pp. 72-77
Author(s):  
Abu Shaid Sujon ◽  
Tahamir Hasan Supto ◽  
Fahim Shariar ◽  
Md Mushfiqur Rahman Pallab ◽  
Mohammad Zoynal Abedin ◽  
...  

The consequence of placing a different layer of jute and carbon fiber in different position inside the composite has been experimentally investigated. Six layers of woven unidirectional jute fiber and four-layer of carbon fiber has been used with five different stacking sequences in this study. Vacuum Assisted Resin Infusion (VARI) technology has been used for the manufacturing of the composite. After analyzing the results of the tensile and flexural test of the composites, it shows that the stacking sequence has a significant effect on those properties of the composites. Tensile strength of the composites was upgraded when all the layers of carbon fiber were placed in the middle of the sandwich-like composite structure whereas flexural strength of the composites was improved when carbon fibers were placed on the compression and tension side of the composite.

2021 ◽  
pp. 002199832110316
Author(s):  
IA Abdulganiyu ◽  
INA Oguocha ◽  
AG Odeshi

The effects of microfiller addition on the flexural properties of carbon fiber reinforced phenolic (CFRP) matrix composites were investigated. The CFRP was produced using colloidal silica and silicon carbide (SiC) microfillers, 2 D woven carbon fibers, and two variants of phenolic resole (HRJ-15881 and SP-6877). The resins have the same phenol and solid content but differ in their viscosities and HCHO (formaldehyde) content. The weight fractions of microfillers incorporated into the phenolic matrix are 0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2 wt.%. Flexural properties were determined using a three-point bending test and the damage evolution under flexural loading was investigated using optical and scanning electron microscopy. The results indicated that the reinforcement of phenolic resins with carbon fibers increased the flexural strength of the HRJ-15881 and SP-6877 by 508% and 909%, respectively. The flexural strength of the CFRP composites further increased with the addition of SiC particles up to 1 wt.% SiC but decreased with further increase in the amount of SiC particles. On the other hand, the flexural modulus of the CFRP composites generally decreased with the addition of SiC microfiller. Both the flexural strength and flexural modulus of the CFRP did not improve with the addition of colloidal silica particles. The decrease in flexural properties is caused by the agglomeration of the microfillers, with colloidal silica exhibiting more tendency for agglomeration than SiC. The fractured surfaces revealed fiber breakage, matrix cracking, and delamination under flexural loading. The tendency for failure worsened at microfiller addition of ≥1.5 wt.%.


2014 ◽  
Vol 910 ◽  
pp. 153-156
Author(s):  
Ching Wen Lou ◽  
Jo Mei Liao ◽  
Zheng Lan Lin ◽  
Jia Horng Lin

This study uses carbon fibers (CF) to reinforce polylactic acid (PLA) matrices to form CF/PLA biocomposites. Tensile test, flexural test, and impact test are performed on biocomposites to evaluate their mechanical properties. The results of tests show that an increment of the CF content results in an increase in tensile strength, flexural strength, flexural modulus, and impact strength. The combination of 15 wt% CF provides the resulting biocomposites with a 72 % increase in tensile strength, a 322 % increase in flexural modulus, and a 96 % increase in impact strength.


2018 ◽  
Vol 281 ◽  
pp. 408-413 ◽  
Author(s):  
Wei Jie Xie ◽  
Hai Peng Qiu ◽  
Ming Wei Chen ◽  
Shan Hua Liu

The purpose of this study was to investigate the influence of carbon fiber treatment on flexural properties of carbon fiber reinforced SiC matrix (C/SiC) composites. C/SiC composites were prepared by polymer impregnation pyrolysis (PIP) progress with polycarbosilane (PCS) as impregnant and carbon fiber as reinforcement. The flexural strength at room temperature of the 2D laminated composites were measured and analyzed with different carbon fiber treatment process. It was found that the flexural strength of the composites with carbon fibers coated by pyrolytic carbon was 53.5% higher than that with non-coated carbon fibers. The results also show that the flexural strength of the composites with 1600°C heat treated carbon fibers increased by 25.4% compared with the composites with non-heat treated fibers.


2012 ◽  
Vol 224 ◽  
pp. 199-203
Author(s):  
Xiang Hong Zhang ◽  
Han Yang ◽  
Hao Zhang ◽  
Chun Yang Wang

In this study, nylon PA6 resin was filled with carbon fibers by employing the technique of mechanical alloying and utilizing the special properties of carbon fiber. The effects of carbon fiber on the mechanical property of the nylon PA6 were also studied. From the results, filling nylon PA6 resin with carbon fiber could effectively enhance the tensile strength, the elastic modulus, the flexural strength and the flexural modulus for the material. In addition, the material shrinkage was also significantly reduced. The enhancing effects varied as CF content changed. Through comparative experiments, the optimal proportion of the addition was determined. Replacing the conventional irony back pad of military outdoor pot by this composite would not only largely reduce the load and improve the motility for the soldiers, but also ensure a better battlefield adaptability and comfort.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2010 ◽  
Vol 4 (4) ◽  
pp. 329-337
Author(s):  
Fabio Pereira ◽  
◽  
Fabiana Vieira ◽  
Luiz de Castro ◽  
Ricardo Michel ◽  
...  

In this work the influence of different configurations in the sample preparation process on commercial polyacrylonitrile-based carbon fibers mechanical tests were studied. Mechanical properties, such as tensile strength, Young’s modulus, elongation and Weibull modulus, were evaluated. The results showed that all sample preparation steps may have strong influence on the results.


Author(s):  
Р. Ш. Іскандаров ◽  
Н. В. Сова ◽  
Б. М. Савченко ◽  
І. І. П'ятничук ◽  
В. А. Татаренко

Study of the FFF additive manufacturing process of composite material based on L – polylactide (PLLA) with ultra-short carbon fibers. Tensile strength and elongation at break for all test specimens were determined according to ISO 527. Tensile modulus - ASTM D638-10, specimen density - PN-EN ISO 1183, microscopic examination - according to ASTM E2015 - 04 (2014). Charpy Shock Tests ISO 179 and ASTM D256. Bending test method ISO 178 and ASTM D 790. The rational modes of FFF additive manufacturing (AM) of carbon fiber composite based on PLLA was established. Properties of carbon fiber PLLA and unfilled PLLA was determinated for AM formed samples and injection molded samples. Carbon fiber composites have significantly higher flexural and tensile module us values compared to the original L-polylactide, which is due to the effect of polymer matrix reinforcement by the fibrous component. However, finished products obtained by AM PLLA carbon composite have a lower impact strength and tensile strength, which is likely to be due to the fact that the carbon fibers are short (50-60 mkm) and have a cavitations effect during injection molding and AM. Density of carbon fiber filled PLLLA was lower the theoretically calculated value for filament material as well for injection molded and AM formed samples. Density reduction probably the main cause of impact properties deterioration due to cavity forming around carbon fibers. Density and tensile properties of AM formed samples can be changed by AM slicing parameter – extrusion multiplier. Cavitation effect for carbon fiber composites observed for PLLA composite in form AM filament, injection molded parts and AM formed samples. Cavity forming was confirmed by optical microscopy and density measurement. Possible reason for cavity forming is orientation deformation of the fiber in polymer matrix during the formation of the filament. The effect of cavitation also persists in the AM of products from carbon composites due to the passage of the orientation at the exit of the printer nozzle.  The possibility of regulating the density and physical and mechanical properties of carbon composite products obtained by the additive manufacturing method has been established. Selection of rational values of the extrusion multiplier and the direction of the layers in the additive molding allows you to create products with the desired complex of properties.


2021 ◽  
pp. 089270572110517
Author(s):  
MS Irfan ◽  
RA Alia ◽  
T Khan ◽  
WJ Cantwell ◽  
R Umer

In this work, the long-term creep response of high-performance carbon fiber PEKK (CF/PEKK) composites was evaluated by performing extrapolated short-term flexural creep tests at various temperatures. The time-temperature superposition principle (TTSP) with vertical as well as horizontal shifting was used to generate master curves at reference temperatures of 120°C. Satin weave-based CF/PEKK prepregs were used to manufacture eight-layer composites via compression molding, with three different stacking sequences: (a) zero-direction [0]8 (b) cross-ply [0, 90]4 and (c) quasi-isotropic [90, −45, 45, 0]2 s. The flexural properties under three-point bending arrangement in a universal testing machine were also evaluated. A dynamic mechanical thermal analyzer (DMTA) in three-point bending mode was used to evaluate the temperature-dependent viscoelastic properties of the three types of composites. The creep and creep-recovery behavior was evaluated at 40°C, 80°C, 120°C, 160°C and 200°C. To construct a master curve, extrapolated short-term isothermal creep tests were performed from 120°C to 180°C at the intervals of 10°C. The predicted master curve represents the creep behavior of composites over more than 10 years. It was shown that the quasi-isotropic CF/PEKK composites exhibited 27% and 12% higher creep resistance at 120°C as compared to zero-direction and cross-ply laminates, respectively. Higher flexural modulus (23%) and flexural strengths (33%) were also exhibited by the quasi-isotropic CF/PEKK composites. The final thickness of quasi-isotropic laminates was 8% lower than the 0o laminates. After analyzing the cross-sections of the composites, it was proposed that the superior mechanical properties of the quasi-isotropic laminates could be due to enhanced nesting between neighboring prepreg layers during the compression molding process, which resulted in closer packing of the fibers. It has been shown that the prepreg stacking sequence could affect the creep behavior and flexural properties of the compression-molded CF/PEKK composites.


2020 ◽  
Vol 18 (11) ◽  
pp. 801-805
Author(s):  
Kyung-Soo Jeon ◽  
R. Nirmala ◽  
Seong-Hwa Hong ◽  
Yong-II Chung ◽  
R. Navamathavan ◽  
...  

This manuscript is dealt with the synthesis of short carbon fibers reinforced polycarbonate polymer composite by using injection modeling technique. Four different composite materials were obtained by varying the carbon fibers weight percentage of 10, 20, 30 and 40%. The synthesized carbon fibers/polycarbonate composites were characterized for their morphological, mechanical and thermal properties by means of scanning electron microscopy (SEM), universal testing machine (UTM) and IZOD strength test. The resultant carbon fibers/polycarbonate composites exhibited excellent interfacial adhesion between carbon fibers and polycarbonate resin. The tensile properties were observed to be monotonically increases with increasing carbon fiber content in the composite resin. The tensile strength of carbon fiber/polycarbonate composites with the carbon fiber content 40% were increased about 8 times than that of the pristine polycarbonate matrix. The carbon fibers/polycarbonate composites with 40 wt.% of short carbon fibers exhibited a high tensile strength and thermal conductivity. The incorporation of carbon fiber in to polycarbonate resin resulted in a significant enhancement in the mechanical and the thermal behavior. These studies suggested that the short carbon fiber incorporated polycarbonate composite matrix is a good candidate material for many technological applications.


Sign in / Sign up

Export Citation Format

Share Document