Strength Characteristics of 3D-Printed PETG-Based Products Optimization

2021 ◽  
Vol 899 ◽  
pp. 512-517
Author(s):  
Valeriy V. Vlasov ◽  
Pavel A. Trutnev

The paper considers the dependence of the strength properties of 3D-printed parts on FDM printing modes (temperature and speed), as well as the layer arrangement. PETG (polyethylene glycol terephthalate) based filament was chosen as the basis. A 3D printer was used to produce samples with strictly defined orientation of layers — longitudinal and transverse tensile force at different temperature and printing speed. The experiment has established the effect of these two factors on the tensile strength. The strength of the samples printed transversely was higher than the strength of samples printed longitudinally. This indicates a higher interlayer adhesion.

“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


2019 ◽  
Vol 3 (2) ◽  

Experimental design has been used to determine outlying factors that affect tensile strength of fused deposition modelling 3D printed PLA parts. A two level, three factor full factorial experiments were utilized to determine the best combination of factors that yielded the highest tensile strength of PLA tensile dog bones manufactured in accordance with ASTM D638-14. PLA is particularly desirable due to its environmental friendliness, biodegradability, low cost, and low melting point, allowing it to be built on a non-heated platform without risk of toxic fumes. Increasing the tensile strength of PLA will allow PLA to be used in a wider range of applications that demand stronger plastic parts. The chosen factors were infill percentage, nozzle temperature, and printing speed. The tensile strength was affected by all factors and combinations except for high levels of infill percentage, nozzle temperature, and printing speed combined.


Author(s):  
M. N. F. Saniman ◽  
M. H. M Hashim ◽  
K. A. Mohammad ◽  
K. A. Abd Wahid ◽  
W. M. Wan Muhamad ◽  
...  

Various infill patterns are introduced in 3D printing to generate low density objects that leads to reduced cost and fabrication time through mass reduction. However, as a trade-off, the strength of the 3D printed component is uncertain. Confusions arise in determining the infill pattern with highest value of tensile strength since most studies limited only to rectilinear, honeycomb, and concentric infill patterns. As consequences, there are very little information on rarely used infill patterns such as Hilbert curve, Archimedean cord and octagram spiral. Therefore, the purpose of this research is to investigate and compare the tensile strength and strain of all infill patterns in mass reduction of 3D printed components experimentally. Following ASTM D638 type III standard, ten tensile test specimens of each infill patterns with 20% density were printed with an FFF 3D printer and were then tested. It was found that Archimedean cords infill pattern had the highest specific tensile strength of 33.23×103 MPa∙mm3/g which made it as the optimum infill pattern for the mass reduction of 3D printed parts with a high tensile strength. On the other hand, having the highest specific tensile strain of 18.21×103 %∙mm3/g, concentric infill pattern was found to be more suitable for producing lightweight parts with a higher elongation before break. Additionally, Hilbert curve infill was the worst selection for mass reduction since it had the lowest values of specific tensile strength and specific strain of 19.80×103 MPa∙mm3/g and 8.34 %∙mm3/g, respectively. Nevertheless, the trends of tensile strength and strain of all six infill patterns had been obtained, especially for rarely investigated infill patterns of Archimedean cords, octagram spiral, and Hilbert curve. Specifically, the trend from the strongest to the weakest (in % compared to solid) for specific tensile strength is rectilinear (38.57%), Archimedean chords (37.29%), concentric (36.57%), octagram spiral (34.79%), honeycomb (27.84%), and Hilbert curve (22.25%), while for specific strain is concentric (102.6%), octagram spiral (83.94%), rectilinear (78.22%), Archimedean cords (77.99%), honeycomb (54.84%), and Hilbert curve (45.14%).


2001 ◽  
Vol 36 (4) ◽  
pp. 347-357 ◽  
Author(s):  
N. K Naik ◽  
M. N Singh

Twisted yarns are normally used for increasing the lateral cohesion of filaments and also for ease of handling. In this paper, an analytical method is presented for predicting the effective transverse tensile strength of the twisted impregnated yarns made of continuous filaments. In the analysis, a varying degree of twist in filaments at different radii of the yarn is considered. The effect of the twist angle on the transverse tensile strength properties of the twisted impregnated yarns is presented. It is seen that there can be an increase in transverse tensile strength of the twisted impregnated yarns compared with that of the corresponding impregnated strands.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 731-738 ◽  
Author(s):  
KARITA KINNUNEN-RAUDASKOSKI ◽  
KRISTIAN SALMINEN ◽  
JANI LEHMONEN ◽  
TUOMO HJELT

Production cost savings by lowering basis weight has been a trend in papermaking. The strategy has been to decrease the amount of softwood kraft pulp and increase use of fillers and recycled fibers. These changes have a tendency to lower strength properties of both the wet and dry web. To compensate for the strength loss in the paper, a greater quantity of strength additives is often required, either dosed at the wet end or applied to the wet web by spray. In this pilot-scale study, it was shown how strength additives can be effectively applied with foam-based application technology. The technology can simultaneously increase dryness after wet pressing and enhance dry and wet web strength properties. Foam application of polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVOH), carboxymethyl cellulose (CMC), guar gum, starch, and cellulose microfibrils (CMF) increased web dryness after wet pressing up to 5.2%-units compared to the reference sample. The enhanced dewatering with starch, guar gum, and CMF was detected with a bulk increase. Additionally, a significant increase in z-directional tensile strength of dry web and and in-plane tensile strength properties of wet web was obtained. Based on the results, foam application technology can be a very useful technology for several applications in the paper industry.


2018 ◽  
Vol 60 (7-8) ◽  
pp. 679-686 ◽  
Author(s):  
Jim Floor ◽  
Bas van Deursen ◽  
Erik Tempelman

2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


Sign in / Sign up

Export Citation Format

Share Document