Development of Mucoadhesive Film-Forming Systems Containing Black Ginger Extract for Aphthous Ulcers

2021 ◽  
Vol 901 ◽  
pp. 104-110
Author(s):  
Nattanich Wattanaphraya ◽  
Somkamol Manchun ◽  
Siriporn Taokaew ◽  
Worawut Kriangkrai

Film-forming systems (FFSs) were developed by using Eudragit® E100 as a film former. Kaempferia parviflora (black ginger) extract was used as an anti-inflammatory agent for aphthous ulcers. The FFS could rapidly form a thin film in only 5 s when it was applied to a wet surface e.g. an aphthous ulcer. When the FFS was applied to a dry surface, the FFS without extract could form a film in 2-4 min. The incorporation of this extract contributed to delaying the film-formation time in the dry state; hence, the film-forming time increased to 6-8 min. The mucoadhesive property of FFSs was verified with the wash-off method. To simulate oromucosal conditions, the FFSs were applied on a cellophane membrane coated with mucin and washed by phosphate buffer of pH 6.8. The formulations without mucoadhesive polymers could not withstand flushing with a medium for more than 8 min without dislodging. Therefore, three different mucoadhesive agents were trialed: PVP K90, HPMC E15 LV, and HPC SL. The highest adhesion results were obtained when HPMC was added at 5%(w/w) as well as, the residence time was 22 min. In vitro release of black ginger extract from FFS showed a gradual release for 2 h. This study indicated that the FFS with HPMC E15 LV was an appropriate alternative formulation as a local delivery system for an aphthous ulcer.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1599
Author(s):  
Yaosong Wang ◽  
Youling L. Xiong

Protein-based biodegradable packaging films are of environmental significance. The effect of oxidized ferulic acid (OFA)/tannic acid (OTA) on the crosslinking and film-forming properties of whey protein isolate (WPI) was investigated. Both of the oxidized acids induced protein oxidation and promoted WPI crosslinking through the actions of quinone carbonyl and protein sulfhydryl, and amino groups. OTA enhanced the tensile strength (from 4.5 MPa to max 6.7 MPa) and stiffness (from 215 MPa to max 376 MPa) of the WPI film, whereas OFA significantly increased the elongation at break. The water absorption capability and heat resistance of the films were greatly improved by the addition of OTA. Due to the original color of OTA, the incorporation of OTA significantly reduced light transmittance of the WPI film (λ 200–600 nm) as well as the transparency, whereas no significant changes were induced by the OFA treatment. Higher concentrations of OTA reduced the in vitro digestibility of the WPI film, while the addition of OFA had no significant effect. Overall, these two oxidized polyphenols promoted the crosslinking of WPI and modified the film properties, with OTA showing an overall stronger efficacy than OFA due to more functional groups available.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Norfatin Izzatie Mohamad Saimi ◽  
Norazlinaliza Salim ◽  
Noraini Ahmad ◽  
Emilia Abdulmalek ◽  
Mohd Basyaruddin Abdul Rahman

Gemcitabine (Gem) and cisplatin (Cis) are currently being used for lung cancer treatment, but they are highly toxic in high dosages. This research aimed to develop a niosome formulation containing a low-dosage Gem and Cis (NGC), as an alternative formulation for lung cancer treatment. NGC was prepared using a very simple heating method and was further optimized by D-optimal mixture design. The optimum NGC formulation with particle size, polydispersity index (PDI), and zeta potential of 166.45 nm, 0.16, and −15.28 mV, respectively, was obtained and remained stable at 27 °C with no phase separation for up to 90 days. The aerosol output was 96.22%, which indicates its suitability as aerosolized formulation. An in vitro drug release study using the dialysis bag diffusion technique showed controlled release for both drugs up to 24 h penetration. A cytotoxicity study against normal lung (MRC5) and lung cancer (A549) cell lines was investigated. The results showed that the optimized NGC had reduced cytotoxicity effects against both MRC5 and A549 when compared with the control (Gem + Cis alone) from very toxic (IC50 < 1.56 µg/mL) to weakly toxic (IC50 280.00 µg/mL) and moderately toxic (IC50 = 46.00 µg/mL), respectively, after 72 h of treatment. These findings revealed that the optimized NGC has excellent potential and is a promising prospect in aerosolized delivery systems to treat lung cancer that warrants further investigation.


2018 ◽  
Vol 29 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Tânia Mara da Silva ◽  
Virgílio Vilas Boas Fernandes Junior ◽  
Rosemary Soares de Santana ◽  
Renata Marques de Melo Marinho ◽  
Márcia Carneiro Valera ◽  
...  

Abstract The aim of this study was to evaluate in vitro the influence of 20% glycolic ginger extract on the bond strength of glass-fiber post cemented with etch-and-rinse or self-etching resin cement. Forty-eight bovine roots were standardized (17±0.5 mm) and randomly divided into two groups, according to irrigant used during biomechanical preparation: NaOCl: 1% sodium hypochlorite and GEN: 20% glycolic ginger extract. Root canal was prepared and randomly assigned to one of two subgroups (n=12), according to luting protocol: self-etching (RelyX U200) and etch-and-rinse (RelyX ARC). After 48 h, the roots were sectioned perpendicularly (4 in cervical third and 3 in middle third) and submitted to push-out bond strength test (50 kgf load cell, 1.0 mm/min). Failure mode was analyzed in SEM and stereomicroscopy. Data were analyzed by three-way ANOVA and Tukey tests (p<0.05). ANOVA revealed that there were no significant differences between U200 (2.01±0.17)B and ARC (1.93±0.12)B in GEN group, and at the cervical third for both irrigants, 2.69±0.16A and 2.54±0.17A, respectively. Middle third showed lower bond strength than cervical third, regardless the irrigant. Overall, the cervical third regardless the irrigant employed and the association between NaOCl and ARC, presented better adhesive performance.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2223
Author(s):  
Moises Bustamante-Torres ◽  
Victor H. Pino-Ramos ◽  
David Romero-Fierro ◽  
Sandra P. Hidalgo-Bonilla ◽  
Héctor Magaña ◽  
...  

The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar. Cross-linked hydrogel film formation depended on monomer concentrations and the degree of radiation used (Cobalt-60). The obtained hydrogel films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical testing. The swelling of the hydrogels was evidenced by the influence of their pH-sensitiveness. The hydrogel was loaded with antimicrobial agents (AgNPs or ciprofloxacin), and their related activity was evaluated. Finally, the antimicrobial activity of biocidal-loaded hydrogel was tested against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) on in vitro conditions.


Author(s):  
Pehlivanović Belma ◽  
Čaklovica Kenan ◽  
Lagumdžija Dina ◽  
Omerović Naida ◽  
Žiga Smajić Nermina ◽  
...  

The pursuance of novel antimicrobial and anti-inflammatory agents has been expanding due to a significant need for more efficient pharmacotherapy of various infections and chronic diseases. During the last decade, pharmacokinetics, pharmacodynamics and pharmacological properties of curcumin have been extensively studied. The aim of the present study was to evaluate the antibacterial activity of curcumin against both Gram-positive and Gram-negative bacteria as well as its antifungal activity by using in vitro agar well diffusion assay. Moreover, the anti-inflammatory activity of curcumin was determined with in vitro assay of inhibition of protein denaturation. Results demonstrated wide antimicrobial activity of curcumin upon all of the test bacteria and fungi. The strongest activity of curcumin was observed at a concentration of 0.50 mg/ml against S. aureus, L. monocytogenes, E. coli, P. aeruginosa and C. albicans, resulting in a maximum zone of inhibition of 14.7 mm, 14.3 mm, 13.7 mm, 10.7 mm and 10.7 mm, respectively. Findings suggested that the antimicrobial activity of curcuminis dependent upon the concentrations. Furthermore, results demonstrated high effectiveness of curcumin compared to standard acetylsalicylic acid in inhibiting heat-induced protein denaturation, which activity is also depended upon the concentrations. The present study emphasises the potential application of curcumin as a natural antimicrobial and anti-inflammatory agent. However, findings of this study are restricted to in vitro assays and consideration should be given to conducting a study involving wider dose range test substances as well as including further research on in vivo models.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (12) ◽  
pp. 23-33
Author(s):  
R. Kanekar ◽  
◽  
P. M. Dandagi ◽  
A. P. Gadad

The objective of the present study was to prepare and evaluate fast-dissolving oral films of prochlorperazine maleate (PCM), in order to enhance the bioavailability of the drug and to provide rapid onset of action thereby improving patient compliance. The solubility of the drug was increased by preparing inclusion complex with 2-hydroxypropyl-β-cyclodextrin (2HPβCD) and then incorporating it into the fast dissolving films. The fast-dissolving films of PCM were prepared by solvent casting method using different film forming polymers such as HPMC E15 and HPMC E5, either as single polymer or combination of the two. The film formulations were evaluated for various physico-chemical parameters. All formulations released more than 85% of the drug within 15 minutes. Formulation F4 showed best in vitro drug release profile. From the ex vivo study it was found that 94.79% of drug permeated through the porcine oral mucosa from the optimized formulation F4 within 60 mins.


2018 ◽  
Vol 90 (3) ◽  
pp. 507-522 ◽  
Author(s):  
Erica I. Parisi ◽  
Nicole Bonelli ◽  
Emiliano Carretti ◽  
Rodorico Giorgi ◽  
Gabriel M. Ingo ◽  
...  

AbstractThis paper presents an innovative poly(vinyl)alcohol-based film forming system, specifically devised for the controllable and selective cleaning of copper-based artifacts. Traditional cleaning procedures are commonly performed using mechanical and/or chemical methods. Unfortunately, both these methods present some limitations related to both the poor selectivity and invasiveness in case of the mechanical procedure, and to the scarce control over the involved reactions when dealing with a chemical approach. The innovative system proposed in this work allows combining the advantages of chemical and mechanical treatments thanks to the confinement of a complexing agent (EDTA) within a fluid, polymeric matrix, that is able to form a solid thin film upon drying. After treatment, the polymeric film can be completely removed from the artwork through a gentle peeling action. In this contribution, the film formation mechanism was investigated by means of thermal analysis and rheology; the role of plasticizers, volatile solvent fraction, and quantity of loaded EDTA is also discussed. Finally, the results of cleaning tests performed on artificially aged samples, and on a real case study, the “Fontana dei Mostri Marini” by Pietro Tacca in Florence, are presented.


1993 ◽  
Vol 101 (3) ◽  
pp. 133-137 ◽  
Author(s):  
Nikolaos Vassilakos ◽  
Thomas Arnebrant ◽  
Per-Olof Glantz

2021 ◽  
Vol 901 ◽  
pp. 92-97
Author(s):  
Suwannee Panomsuk ◽  
Songsriwittaya Kamolporn ◽  
Chanmeesri Natnaree ◽  
Boonyatulanont Paroch ◽  
Nuntharatanapong Nopparat

Triphala is a traditional Thai herbal formulation containing dried fruits of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula. It has wound healing, antioxidant and anti-inflammatory activities. The objective of this research was to formulate mucoadhesive films containing Triphala extract for aphthous ulcers treatment. The films were formulated using hydroxypropyl methylcellulose, HPMC, (5, 8, 10% w/w) as a film-forming polymer and glycerin (5% w/w) as a plasticizer. Triphala extract (2.5, 5, 10% w/w) was incorporated into the film during the film preparation. The films were then evaluated for the physical appearance, dissolution time, mechanical properties (strength and elasticity) and mucoadhesive capability to the porcine buccal mucosa. The antioxidant activity and anti-inflammatory activity of the films were also evaluated by DPPH assay and the proteins denaturation method, respectively. Physical properties revealed that Triphala-loaded HPMC films were transparent with brown color. All formulations showed 1-2 hr of dissolution times. Triphala films exhibited good mucoadhesive properties. Films prepared from the solution containing HPMC (10% w/w), glycerin (5% w/w), and Triphala extract (10% w/w) were the most appropriate formulation for further development due to suitable strength, elasticity, and mucoadhesive properties. Moreover, the films exhibited antioxidants and anti-inflammatory activity which may help relieve the symptom of aphthous ulcers.


Sign in / Sign up

Export Citation Format

Share Document