Influence of Granulometric Composition and Type of Fillers and Additives on the Strength and Biostability of Cement Composites Based on Dry Building Mixtures

2021 ◽  
Vol 1043 ◽  
pp. 163-175
Author(s):  
Ekaterina Suraeva ◽  
Tatyana Elchishcheva ◽  
Dmitry Svetlov ◽  
Vasiliy Smirnov ◽  
Victor Afonin ◽  
...  

The structure of filled cementitious composite materials is formed as a result of hardening with the formation of a crystalline framework. The filler is involved in the building material crystal system structure formation. Chemically active fillers promote intensive release of hydration products that bind into insoluble compounds and increase the system stability. When developing the formulations for dry building mixtures, it is effective to use several fillers with different properties that complement each other, and biocidal additives increasing the materials resistance to environment effects formed by mold fungi. To create modified dry building mixtures based on cement binder, materials such as filler made of quartz sand of various fractions, fillers chrysotile and clinoptilolite and biocidal additives of the Teflex series were used. The composition with sand grains of 0.16–0.315 mm in size showed high strength properties in bending and compression. The introduction of chrysotile in an amount of 3% by weight of cement and quartz sand with a particle size of 0.16–0.315 mm increases the compressive and flexural strength by 7 and 13%, respectively, compared with the control composition. Clinoptilolite, introduced in an amount of 20% of the cement mass instead of one of the quartz sand fractions, increases the compressive strength of the composites up to 5%. The introduction of the Teflex series additives in the amount of at least 1% by weight of the binder ensures the composites’ fungal resistance. The additive “Teflex disinfectant” in an amount of at least 3% of the cement mass gives the composites fungicidal properties, the zone of no fungal growth on the nutrient solution near the infected samples is 4 mm.

TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


Author(s):  
Vitaliy A. Zuyevskiy ◽  
Daniil O. Klimyuk ◽  
Ivan A. Shemberev

Gear pumps are an important element of many production systems and their replacement in case of failure can be quite expensive, so it is important to have a modern and well-tuned technology for their recovery. There are many methods for restoring the pump's performance, depending on the reason that led to its failure. (Research purpose) The research purpose is in determining what causes most often lead to loss of pump performance, and developing a recovery method that provides the greatest post-repair service life of the pump and low cost of repair. (Materials and methods) Authors took into account that the applied coatings must have sufficient adhesion strength and resistance to mechanical, thermal and corrosion loads during operation. It was found that most often significant leaks of the working fluid, leading to failure, occur due to an increase in the gap between the inner surface of the housing and the gears due to active wear of the housing wells. Authors determined that the method of electric spark treatment of worn-out housing wells is best suited to perform the task (a large post-repair resource and low costs). (Results and discussion) It was found by laboratory studies of the adhesion strength of electric spark coatings with various electrodes that the best transfer of the material to the substrate is provided by bronze electrodes BrMKts3-1. It was noted that the coatings applied using the BrMKts3-1 electrode have high strength properties. (Conclusions) Research conducted in the center for collective use "Nano-Center" VIM confirmed the possibility of effective recovery of the gear pump by electric spark treatment.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Adam M. Breister ◽  
Muhammad A. Imam ◽  
Zhichao Zhou ◽  
Md Ariful Ahsan ◽  
Juan C. Noveron ◽  
...  

AbstractPolymer composites are attractive for structural applications in the built environment due to their lightweight and high strength properties but suffer from degradation due to environmental factors. While abiotic factors like temperature, moisture, and ultraviolet light are well studied, little is known about the impacts of naturally occurring microbial communities on their structural integrity. Here we apply complementary time-series multi-omics of biofilms growing on polymer composites and materials characterization to elucidate the processes driving their degradation. We measured a reduction in mechanical properties due to biologically driven molecular chain breakage of esters and reconstructed 121 microbial genomes to describe microbial diversity and pathways associated with polymer composite degradation. The polymer composite microbiome is dominated by four bacterial groups including the Candidate Phyla Radiation that possess pathways for breakdown of acrylate, esters, and bisphenol, abundant in composites. We provide a foundation for understanding interactions of next-generation structural materials with their natural environment that can predict their durability and drive future designs.


Author(s):  
W. Miglietti

Diffusion brazing is a joining process utilized in the manufacture and repair of turbine blades and vanes. MAR-M247 is an investment cast Ni-based superalloy used for turbine blading and has good strength properties at high temperatures. The objectives of this work was to develop a diffusion brazing procedure to achieve high strength joints. A commercially available diffusion brazing filler metal of composition Ni-15Cr-3,5B of 100 μm thickness was used. With the desire to eliminate brittle centre-line phases, the effects of the processing variables (only temperature and time) on the joint microstructure was studied. Once the metallurgy of the joint was understood, mechanical property assessments were undertaken i.e. tensile and creep rupture tests, and the latter being the severest test to evaluate joint strength. The results demonstrated that the diffusion brazed joints had nearly equivalent mechanical strength to that of the parent metal. This showed that the resultant diffusion brazing parameters enabled effective and reliable joining of MAR-M247.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


Author(s):  
Н.А. Сидоренко ◽  
З.М. Дашевский

Methods of extrusion are widely used in technology of thermoelectric (TE) materials manufacturing with high strength and good TE properties at temperatures above 200 K. The method of extrusion of Bi - Sb single crystals in the liquid environment under high hydrostatic pressure is considered. The construction of experimental equipment is presented. It was shown that presented method of extrusion allows preparing of polycrystalline material with high TE and improved strength properties at temperatures below 180 K.


Sign in / Sign up

Export Citation Format

Share Document