Effect of Rolling Direction on the Microstructure and Mechanical Properties of Accumulative Roll Bonding (ARB) Processed Commercially Pure 1050 Aluminum Alloy

2006 ◽  
Vol 503-504 ◽  
pp. 681-686 ◽  
Author(s):  
Yong Suk Kim ◽  
Suk Ha Kang ◽  
Dong Hyuk Shin

The cross-ARB (C-ARB) process, which adopts cross rolling of the two stacked plates, has been performed up to seven cycles on a commercial purity 1050 aluminum alloy to obtain ultrafine grains with an average grain size of 0.7μm. Microstructural evolution of the C-ARB processed aluminum alloy was examined by a transmission electron microscopy as a function of process cycle number (accumulated plastic strain). Tensile property of the severely deformed Al alloy was also explored. Grain size of grains of the C-ARB processed alloy varied across thickness of the rolled plate. The size of grains at the top and bottom of the rolled plate converged to 0.65μm, while that of grains at the center of the plate increased with the number of ARB cycles. Tensile strength of the CARB processed 1050 Al alloy increased from 100MPa (as-received) to 160MPa. Tensile elongation varied with the number of cycles, but 15% of failure strain was measured from the 6-cycle C-ARB processed specimen. The variation of the elongation with the cycle number coincided exactly with the variation of grain size at the center of the processed plate.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 314
Author(s):  
Fulong Chen ◽  
Haitao Qu ◽  
Wei Wu ◽  
Jing-Hua Zheng ◽  
Shuguang Qu ◽  
...  

Physicallybased constitutive equations are increasingly used for finite element simulations of metal forming processes due to the robust capability of modelling of underlying microstructure evolutions. However, one of thelimitations of current models is the lack of practical validation using real microstructure data due to the difficulties in achieving statistically meaningful data at a sufficiently large microstructure scale. Particularly, dislocation density and grain size governing the hardening in sheet deformation are of vital importance and need to be precisely quantified. In this paper, a set of dislocation mechanics-based plane stress material model is constructed for hot forming aluminum alloy. This material model is applied to high strength 7075 aluminum alloy for the prediction of the flow behaviorsconditioned at 300–400 °C with various strain rates. Additionally, an electron backscatter diffraction (EBSD) technique was applied to examine the average grain size and geometrical necessary dislocation (GND) density evolutions, enabling both macro- and micro- characteristics to be successfully predicted. In addition, to simulate the experienced plane stress states in sheet metal forming, the calibrated model is further extended to a plane stress stateto accuratelypredict the forming limits under hot conditions.The comprehensively calibrated material model could be used for guidinga better selection of industrial processing parameters and designing process windows, taking into account both the formed shape as well as post formed microstructure and, hence, properties.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2018 ◽  
Vol 941 ◽  
pp. 1529-1534
Author(s):  
Ni Tian ◽  
Qi Long Liu ◽  
Zi Yan Zhao ◽  
Gang Zhao ◽  
Kun Liu

The microstructure of Al-1.01Mg-1.11Si-0.38Cu-0.69Mn aluminum alloy plate hot-rolled from homogenization and homogenization-free ingots were investigated by optical microscopy and scanning electron microscopy assisted with energy dispersive spectroscopy (SEM/EDS). The results showed that there are 3 main kinds of constituents such as Mg2Si, AlCuMgSi and AlFeMnSi in the as-cast Al-1.01Mg-1.11Si-0.38Cu-0.69Mn aluminum alloy ingot. After homogenization treated at 545°C for 24h, the black Mg2Si and the white bright AlCuMgSi particles in the ingot dissolved into matrix, but the grey AlFeMnSi phase partly dissolved, contracted into sphere and become coarse, many ultrafine dispersoids appear in the dendritic arms. The constituents in the plates hot-rolled from the homogenization and homogenization-free ingots are both distributed as broken chains along the rolling direction. However, compared with the particles configuration in the plate that hot-rolled from homogenization ingot, the particles in the plate that hot-rolled from the homogenization-free ingot are finer, more numerous and more homogenous, and with insufficient recrystallization when the plates are solution treated at 545°C for 2 h and then water quenched.


2020 ◽  
Vol 20 (7) ◽  
pp. 4419-4422
Author(s):  
Seong-Hee Lee

Microstructural changes with annealing of a nanostructured complex aluminum alloy fabricated by 3 cycles of four-layer stack ARB process using different Al alloys were investigated in detail. The four-layer stack ARB process using AA1050, AA5052 and AA6061 alloy sheets was performed up to 3 cycles without a lubricant at room temperature. The sample fabricated by the ARB is a multi-layer aluminum alloy sheet in which the AA1050, AA5052 and AA6061 aluminum alloys are alternately stacked to each other. The layer thickness of each alloy became thinner and elongated to the rolling direction with the number of ARB cycles. The grain size decreased with increasing of the number of ARB cycles, and became about 160 nm in thickness after 3 cycles. The complex Al alloy still showed ultrafine grained microstructure to annealing temperature of 300 °C, but it had a heterogeneous structure containing both the ultrafine grains and the coarse grains due to an occurrence of discontinuous recrystallization after 350 °C.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 337 ◽  
Author(s):  
Khaled Al-Fadhalah ◽  
Fahad Asi

The present work examined the effect of artificial aging on the microstructure, texture, and hardness homogeneity in aluminum alloy AA6082 subjected to friction stir processing (FSP). Aging was applied to FSP samples at three different temperatures (150 °C, 175 °C, and 200 °C) for a period of 1 h, 6 h, and 12 h. Microstructure analysis using optical Microscopy (OM) and Electron Back-Scattered Diffraction (EBSD) indicated that FSP produced fine equiaxed grains, with an average grain size of 6.5 μm, in the stir zone (SZ) due to dynamic recrystallization. Aging was shown to result in additional grain refinement in the SZ due to the occurrence of recovery and recrystallization with either increasing aging temperature and/or aging time. An optimum average grain size of 3–4 μm was obtained in the SZ by applying aging at 175 °C. This was accompanied by an increase in the fraction of high-angle grain boundaries. FSP provided a simple shear texture with a major component of B fiber. Increasing aging temperature and/or time resulted in the formation of recrystallization texture of a Cube orientation. In addition, Vickers microhardness was evaluated for the FSP sample, indicating a softening in the SZ due to the dissolution of the hardening precipitates. Compared to other aging temperatures, aging at 175 °C resulted in maximum hardness recovery (90 Hv) to the initial value of base metal (92.5 Hv). The hardness recovery is most likely attributed to the uniform distribution of fine hardening precipitates in the SZ when increasing the aging time to 12 h.


2004 ◽  
Vol 449-452 ◽  
pp. 625-628 ◽  
Author(s):  
Yong Suk Kim ◽  
T.O. Lee ◽  
Dong Hyuk Shin

The ARB process has been carried out up to seven cycles on a commercial purity 1100 aluminum alloy to obtain ultra-fine grains with the average grain size of 500 nm. Microstructural evolution of the ARB processed aluminum alloy was examined by a transmission electron microscopy as a function of accumulated total strain. Mechanical properties including hardness, tensile property, and sliding wear characteristics of the severely deformed Al alloy were also investigated. Grain boundaries of the ARB processed alloy were diffusive and poorly defined after the initial ARB cycles, however they changed to well-defined high angle boundaries with the increase of the accumulated strain. Though hardness and strength of the ARB processed alloy were enhanced significantly, wear resistance of the processed alloy hardly increased. The mechanical properties were discussed in connection with the microstructure.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 600
Author(s):  
Lili Zhang ◽  
Yan Song ◽  
Linjie Yang ◽  
Jiuzhou Zhao ◽  
Jie He ◽  
...  

Synergistic effect of TiB2 (in form of Al-5Ti-1B) and La on grain refining results in Al-2Cu alloy was investigated. α-Al grains are significantly refined by Al-5Ti-1B. When trace La is added to the melt, further refinement is exhibited. Average grain size and nucleation undercooling of α-Al reduce first and then almost remain unchanged with La addition. Satisfactory grain refining result achieves when La addition level reaches 600 ppm. When more than 600 ppm La is added to the melt, La-rich particles form and the effect of solute La left in matrix on the microstructure almost no longer changes. Theoretical calculation results demonstrate that solute La segregates to Al melt/TiB2 particles interface along with Ti and Cu prior to α-Al nucleation and the synergistic effect of La and TiB2 particles on grain refinement mainly attributes to the enhancement in the potency of TiB2 particles to heterogeneously nucleate α-Al by trace La addition.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6881
Author(s):  
Yongtao Xu ◽  
Zhifeng Zhang ◽  
Zhihua Gao ◽  
Yuelong Bai ◽  
Purui Zhao ◽  
...  

In this paper, the effect of adding the refiner Sc to the high Zn/Mg ratio 7xxx series aluminum alloy melt on the hot tearing performance, microstructure, and mechanical properties of the alloy is studied. The hot tearing performance test (CRC) method is used to evaluate the hot tearing performance of the alloy. The squeeze casting process was used to form solid cylindrical parts to analyze the structure and properties of the alloy. This study shows that the hot cracking sensitivity of the alloy after the addition of the refiner Sc is significantly reduced. The ingot grain size is significantly reduced, and the average grain size is reduced from about 86 μm to about 53 μm. While the mechanical properties are significantly improved, and the tensile strength reduced from 552 MPa is increased to 571 MPa, and the elongation rate is increased from 11% to 14%.


2021 ◽  
Vol 64 (9) ◽  
pp. 669-678
Author(s):  
V. V. Naumenko ◽  
K. S. Smetanin ◽  
А. V. Muntin ◽  
O. А. Baranova ◽  
S. V. Kovtunov

The article considers results of the study of microstructure parameters effect on the impact strength in temperature range from 0 to –80  °C in 20  °C increments of Charpy samples with a sharp stress concentrator and Mesnager test pieces with a circular stress concentrator from rolled coils of low-carbon microalloyed steel with various thicknesses. The used roll products were produced in conditions of JSC “Vyksa Metallurgical Plant”. The tests were performed using optical and scanning electron microscopy. It is shown that with the same chemical composition and thermomechanical treatment modes, the metal of smaller thickness (6, 8 mm) is characterized by higher strength properties (on average, by 10 MPa for temporary resistance, by 30 MPa for yield strength) and a margin for viscous properties at negative temperatures at close values of grain score and average grain size corresponding to 10 – 11 numbers according to the State standard GOST 5639. The metal with a thickness of 12 mm has the lowest level of cold resistance, and the temperature of brittle transition is minus 50 °C. Structure of rolled products of various thicknesses has a variation in grain size. Rolled metal of smaller thicknesses have a smaller grains corresponding to number 14, rolled metal of larger thicknesses has a larger grains corresponding to number 8. By conducting electron microscopic studies using the backscattered electron method, it was found that a greater number of large-angle boundaries, which are barriers for brittle cracks propagation, are observed in the 6, 8 mm thick rolled products. The constructed orientation maps of the microstructure showed the presence of pronounced deformation texture corresponding to the orientations <110>||RD (rolling direction) and (<113>...<112>)||RD for rolled products with a thickness of 6 mm.


Sign in / Sign up

Export Citation Format

Share Document