Photoluminescence Investigation of Defects Created by Electron Bombardment of 4H-SiC

2007 ◽  
Vol 556-557 ◽  
pp. 313-318 ◽  
Author(s):  
John W. Steeds

Use of a transmission electron microscope to irradiate silicon carbide samples has been demonstrated as a useful additional characterisation technique. The photoluminescence spectra of crystal defects introduced in this way have been found to be extremely rich in detail, involving more than 50 zero phonon lines. It is perhaps disappointing that relatively few of these optical centres have been identified conclusively. Indeed, controversy exists over most of the interpretations that have been advanced. As a step towards clarifying this situation we have been studying many of the more important photoluminescent systems by investigating the dependence of the results on the sample n- and p-doping levels, their stoichiometry, the source of supply, the electron dose, the subsequent annealing history, and by exploiting two new aspects of the technique that will be introduced here. A brief review will be given of new results obtained for some of the major optical centres. Most of the irradiations have been performed at room temperature using 300 kV electrons but some were carried out at 750°C.

Author(s):  
R.D. Leapman ◽  
S.B. Andrews

Elemental mapping of biological specimens by electron energy loss spectroscopy (EELS) can be carried out both in the scanning transmission electron microscope (STEM), and in the energy-filtering transmission electron microscope (EFTEM). Choosing between these two approaches is complicated by the variety of specimens that are encountered (e.g., cells or macromolecules; cryosections, plastic sections or thin films) and by the range of elemental concentrations that occur (from a few percent down to a few parts per million). Our aim here is to consider the strengths of each technique for determining elemental distributions in these different types of specimen.On one hand, it is desirable to collect a parallel EELS spectrum at each point in the specimen using the ‘spectrum-imaging’ technique in the STEM. This minimizes the electron dose and retains as much quantitative information as possible about the inelastic scattering processes in the specimen. On the other hand, collection times in the STEM are often limited by the detector read-out and by available probe current. For example, a 256 x 256 pixel image in the STEM takes at least 30 minutes to acquire with read-out time of 25 ms. The EFTEM is able to collect parallel image data using slow-scan CCD array detectors from as many as 1024 x 1024 pixels with integration times of a few seconds. Furthermore, the EFTEM has an available beam current in the µA range compared with just a few nA in the STEM. Indeed, for some applications this can result in a factor of ~100 shorter acquisition time for the EFTEM relative to the STEM. However, the EFTEM provides much less spectral information, so that the technique of choice ultimately depends on requirements for processing the spectrum at each pixel (viz., isolated edges vs. overlapping edges, uniform thickness vs. non-uniform thickness, molar vs. millimolar concentrations).


Alloys of Al-5% Pb and Al-5% Pb-0.5% Si (by mass) have been manufactured by rapid solidification and then examined by transmission electron microscopy. The rapidly solidified alloy microstructures consist of 5-60 nm Pb particles embedded in an Al matrix. The Pb particles have a cube-cube orientation relation with the Al matrix, and are cub-octahedral in shape, bounded by {100} Al, Pb and {111} Al, Pb facets. The equilibrium Pb particle shape and therefore the anisotropy of solid Al-solid Pb and solid Al-liquid Pb surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 550°C. The ani­sotropy of solid Al-solid Pb surface energy is constant between room temperature and the Pb melting point, with a {100} Al, Pb surface energy about 14% greater than the {111} Al, Pb surface energy, in good agreement with geometric near-neighbour bond energy calculations. The {100} AI, Pb facet disappears when the Pb particles melt, and the anisotropy of solid Al-liquid Pb surface energy decreases gradually with increasing temperature above the Pb melting point, until the Pb particles become spherical at about 550°C.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 7978-7983 ◽  
Author(s):  
Liang Cheng ◽  
Xianfang Zhu ◽  
Jiangbin Su

The coalescence of two single-crystalline Au nanoparticles on surface of amorphous SiOxnanowire, as induced by electron beam irradiation, wasin situstudied at room temperature in a transmission electron microscope.


2016 ◽  
Vol 858 ◽  
pp. 269-273
Author(s):  
Anne Henry ◽  
Hiroshi Yano ◽  
Tomoaki Hatayama

The photoluminescence of the near band gap emission of 10H-SiC is revealed for the first time and detected just below 3.0 eV. The crystallinity thus polytype of the sample is controlled with transmission electron microscope analyses and Laue diffraction. On the photoluminescence spectra up to eight sharp lines are associated to the non-phonon lines of the nitrogen bound exciton even if ten are expected in 10H-SiC. Phonon replicas of these non-phonon lines are observed at lower energy with energy separations similar than those in other hexagonal SiC polytypes. At moderate temperature free-exciton replicas are also observed which allow the determination of the excitonic band gap at 3020.6 meV, value in agreement with the hexagonality of 10H-SiC of 40%. The binding energies associated to the nitrogen bound-excitons are determined as well as the ionization energies of the nitrogen donors in the 10H-SiC polytype.


2000 ◽  
Vol 650 ◽  
Author(s):  
A. Meldrum ◽  
K. Beaty ◽  
L. A. Boatner ◽  
C. W. White

ABSTRACTIrradiation-induced amorphization of Cd2Nb2O7 pyrochlore was investigated by means of in-situ temperature-dependent ion-irradiation experiments in a transmission electron microscope, combined with ex-situ ion-implantation (at ambient temperature) and RBS/channeling analysis. The in-situ experiments were performed using Ne or Xe ions with energies of 280 and 1200 keV, respectively. For the bulk implantation experiments, the incident ion energies were 70 keV (Ne+) and 320 keV (Xe2+). The critical amorphization temperature for Cd2Nb2O7 is ∼480 K (280 keV Ne+) or ∼620 K (1200 keV Xe2+). The dose for in-situ amorphization at room temperature is 0.22 dpa for Xe2+, but is 0.65 dpa for Ne+ irradiation. Both types of experiments suggest a cascade overlap mechanism of amorphization. The results were analyzed in light of available models for the crystalline-to-amorphous transformation and were compared to previous ionirradiation experiments on other pyrochlore compositions.


1981 ◽  
Vol 7 ◽  
Author(s):  
A. Mogro-Campero ◽  
E.L. Hall ◽  
J.L. Walter ◽  
A.J. Ratkowski

ABSTRACTSpecimens of amorphous Fe75B25 produced by rapid quenching from the melt were annealed to complete crystallization and subjected to 1 MeV electron irradiation in a transmission electron microscope at room temperature and at 130 K. The irradiation was interrupted at various intervals in order to obtain bright field images and diffraction patterns. The Fe3B crystals did not become amorphous at room temperature, even after damage levels of several dpa, whereas at 130 K the crystalline to amorphous transformation was observed to be complete at damage levels below 1 dpa. The results are combined with those of ion irradiation work on Fe3B; qualitative agreement is found between Fe3B and previous work on the Zr3Al alloy concerning their response to displacement damage by electron and ion irradiation.


2006 ◽  
Vol 527-529 ◽  
pp. 481-484 ◽  
Author(s):  
W. Sullivan ◽  
John W. Steeds

Samples of 4H SiC, both n- and p-doped, have been irradiated with low-energy electrons in a transmission electron microscope. The dependence of the silicon vacancy-related V1 ZPL doublet (~860nm) on electron energy and electron dose has been investigated by low temperature photoluminescence spectroscopy. Furthermore, this luminescence centre has been studied across a broad range of samples of various doping levels. Some annealing characteristics of this centre are reported.


Author(s):  
Robert W. Weise

The role that scanning electron microscopy (SEM) is playing in descriptive helminthology is becoming more apparent in the literature. However, the majority of papers on the SEM of helminths have used conventional or modified light microscope techniques of fixation and dehydration, and not established SEM techniques in which freeze- and critical point-drying are routinely used. The present investigation was undertaken to examine the applicability of modified scanning and transmission electron microscope techniques for the preparation of certain helminths for SEM.Method I.– Live animal-parasitic nematodes were fixed in 6% phosphate buffered glutaraldehyde for 24 hr at room temperature.


Sign in / Sign up

Export Citation Format

Share Document