Effect of Die Temperature on Mechanical Properties of Hot Pressed P/M Parts

2010 ◽  
Vol 638-642 ◽  
pp. 1802-1810
Author(s):  
Abolfazl Babakhani ◽  
Ali Haerian

In conventional warm compaction, both powder and die are heated to a certain temperature during compaction. This is a technique for producing P/M compacts with higher green and sintered strength as compared to room temperature pressing. However, there is a certain limit to powder temperature due to flow problems at higher temperatures. Heating the die above this practical limit can further improve properties. In this work, the effect of die temperature on green and sintered properties of Astaloy CrM powder has been investigated. Here, the powder at 135 oC was fed to the die at different temperatures. Density and strength for samples in green and sintered conditions were evaluated for two compaction pressures of 500 and 650MPa and temperatures ranging from ranging from 135 to 165 oC. Comparison of samples compressed at room temperature showed marked improvement in density and strength properties. A 22% increase in density, as well as 40% increase in green strength was observed. Tensile and impact strengths were improved by about 10% and 20% respectively. SEM micrographs showed more rounded pores and hence reduced stress raising sites. The improvement in properties can be mainly attributed to changes in powder morphology and die wall lubrication due to migration of hot lubricant from interparticle space to die walls. The latter will reduce particle spacing and bring about more intimate metal-metal contacts as well as better lubrication on die walls.

2011 ◽  
Vol 399-401 ◽  
pp. 172-175 ◽  
Author(s):  
M. F. Idham ◽  
B. Abdullah ◽  
A. Jaffar ◽  
M. H. Ibrahim ◽  
A. Ramli

This study presents the effect of hardness and impact of 2.0% vanadium ductile iron after double quenching heat treatment method on different temperature. Addition of 2.0% Vanadium to ductile iron was produced through conventional CO2 sand casting method. The specimens were preheated to 500°C for 30 minutes, then oil quenched and austenitized at 900°C for 60 minutes before oil quenched again. After that, the specimens were tempered for 90 minutes at three different temperatures including (i) 500°C, (ii) 600°C, and (iii) 700°C respectively before cooled to room temperature by nature air. It is evident found that the addition of 2% Vanadium contributed to the slightly improved to the tensile strength properties but better hardness and impact compared to conventional ductile iron. The higher hardness and impact were found at 500°C and 600°C tempering temperature respectively.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


Alloy Digest ◽  
1969 ◽  
Vol 18 (10) ◽  

Abstract Magnesium ZK61A is a heat treatable sand casting alloy offering higher strength properties for room-temperature applications than other magnesium casting alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Mg-67. Producer or source: The Dow Chemical Company.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2011 ◽  
Vol 78 (4) ◽  
pp. 385-390 ◽  
Author(s):  
Priscilla A Melville ◽  
Nilson R Benites ◽  
Monica Ruz-Peres ◽  
Eugenio Yokoya

The presence of yeasts in milk may cause physical and chemical changes limiting the durability and compromising the quality of the product. Moreover, milk and dairy products contaminated by yeasts may be a potential means of transmission of these microorganisms to man and animals causing several kinds of infections. This study aimed to determine whether different species of yeasts isolated from bovine raw milk had the ability to develop at 37°C and/or under refrigeration temperature. Proteinase and phospholipase activities resulting from these yeasts were also monitored at different temperatures. Five genera of yeasts (Aureobasidium sp., Candida spp., Geotrichum spp., Trichosporon spp. and Rhodotorula spp.) isolated from bovine raw milk samples were evaluated. All strains showed one or a combination of characteristics: growth at 37°C (99·09% of the strains), psychrotrophic behaviour (50·9%), proteinase production (16·81% of the strains at 37°C and 4·09% under refrigeration) and phospholipase production (36·36% of the isolates at 37°C and 10·9% under refrigeration), and all these factors may compromise the quality of the product. Proteinase production was similar for strains incubated at 37°C (16·81% of the isolates) and room temperature (17·27%) but there was less amount of phospholipase-producing strains at room temperature (15·45% of the isolates were positive) when compared with incubation at 37°C (36·36%). Enzymes production at 37°C by yeasts isolated from milk confirmed their pathogenic potential. The refrigeration temperature was found to be most efficient to inhibit enzymes production and consequently ensure better quality of milk. The viability of yeasts and the activity of their enzymes at different temperatures are worrying because this can compromise the quality of dairy products at all stages of production and/or storage, and represent a risk to the consumer.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 617
Author(s):  
Li-Fang Jia ◽  
Lian Zhang ◽  
Jin-Ping Xiao ◽  
Zhe Cheng ◽  
De-Feng Lin ◽  
...  

AlGaN/GaN E/D-mode GaN inverters are successfully fabricated on a 150-mm Si wafer. P-GaN gate technology is applied to be compatible with the commercial E-mode GaN power device technology platform and a systematic study of E/D-mode GaN inverters has been conducted with detail. The key electrical characters have been analyzed from room temperature (RT) to 200 °C. Small variations of the inverters are observed at different temperatures. The logic swing voltage of 2.91 V and 2.89 V are observed at RT and 200 °C at a supply voltage of 3 V. Correspondingly, low/high input noise margins of 0.78 V/1.67 V and 0.68 V/1.72 V are observed at RT and 200 °C. The inverters also demonstrate small rising edge time of the output signal. The results show great potential for GaN smart power integrated circuit (IC) application.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3560
Author(s):  
Tomasz Skrzekut ◽  
Grzegorz Boczkal ◽  
Adam Zwoliński ◽  
Piotr Noga ◽  
Lucyna Jaworska ◽  
...  

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.


1940 ◽  
Vol 44 (349) ◽  
pp. 44-73
Author(s):  
Wilhelm Kuech

Laminated materials incorporating plastics seem to be especially well suited lor highly stressed aircraft components, by reason of their good strength properties. Paper, fabric and wood veneers treated with plastics on a phenolic basis were tested with regard to their strength, especially in bending, shear, absorbed energy in impact bending, notching strength and in their resistance against moisture. Further, the behaviour of compressed plastics was studied at different temperatures under static and dynamic loads. A part of the research was extended to pure phenol resin and to thermoplastics based on methacrylate and polyvinylchloride. The bonding properties of laminated compressed plastics were established. Concluding, some experiments relating to the practical manufacture of aeroplane components are communicated.


1931 ◽  
Vol 4 (3) ◽  
pp. 426-436
Author(s):  
K. J. Soule

Abstract Further work is very desirable on the effect of different accelerators, antioxidants, and fluxes. It is possible that their study will throw more light on the mechanism of the swelling phenomena, and also help to explain the anomalous behavior of some of the fillers tested. It would also seem to be worth while to study the action of a few selected stocks in water, at several temperatures between room temperature and 100° C., to determine if the water absorption and swelling merely increase with rising temperatures, or whether there might be an actual change in behavior at different temperatures.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1818
Author(s):  
Andrea Mura ◽  
Alessando Ricci ◽  
Giancarlo Canavese

Plastics are widely used in structural components where cyclic loads may cause fatigue failure. In particular, in some applications such as in vehicles, the working temperature may change and therefore the strength of the polymeric materials. In this work, the fatigue behavior of two thermoplastic materials (ABS and PC-ABS) at different temperatures has been investigated. In particular, three temperatures have been considered representing the working condition at room temperature, at low temperature (winter conditions), and high temperature (summer conditions and/or components close to the engine). Results show that high temperature have big impact on fatigue performance, while low temperatures may also have a slight positive effect.


Sign in / Sign up

Export Citation Format

Share Document