FEM Analysis of Joint Interface Formation in Magnetic Pressure Seam Welding

2010 ◽  
Vol 638-642 ◽  
pp. 2166-2171 ◽  
Author(s):  
Hisashi Serizawa ◽  
Isao Shibaharar ◽  
Sherif Rashed ◽  
Hidekazu Murakawa

The magnetic pressure seam welding is one of the candidate methods to join thin sheet smart and multifunctional materials. In this research, to examine the mechanism of magnetic pressure welding from a dynamic viewpoint, numerical simulation of the impact was carried out by using a commercial Euler-Lagrange coupling software MSC.Dytran (MSC.Software) as a first step of the computational studies, where the joint between Fe and Al was employed according to the previous experimental researches. From the serial numerical results, it was found that the increase of temperature at the joint interface was not enough to melt Al or Fe in the range of collision velocity and angle studied in this report. Also, it was revealed that the very large mean stress occurred at the interface which could be considered as the pressure at joint interface and Al moved with high velocity along the interface. Moreover, it was found that there were two patterns of plastic strain distribution near the joint interface depending on the collision velocity and collision angle. Finally, it can be concluded that the plastic strain pattern might be related to the success of magnetic pressure seam welding.

2013 ◽  
Vol 577-578 ◽  
pp. 409-412
Author(s):  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi ◽  
Hiroyuki Kuramae

In this paper, the effects of collision velocity on bullet deformation were discussed and performance of protection board made of PC (polycarbonate) plate was estimated. The deformation of the bullet and the PC board after collision were measured by 3-dimensional digitizing machine.Furthermore, the bullet collision analysis was performed by FEM analysis code "LS-DYNA", and the impact load carrying capacity of PC plate was discussed by comparing the experimental results with the analytical ones


2005 ◽  
Vol 502 ◽  
pp. 455-460 ◽  
Author(s):  
Hidefumi Date ◽  
Masatoshi Futakawa ◽  
Masaaki Naka

The impact welding of aluminum onto copper was carried out using a gas gun and the mechanical properties of Al/Cu joint were investigated by tensile tests and micro hardness indentation tests. The strength measured by tensile test decreased with increasing of the impact velocity. The results of the tensile test suggested that it was necessary to make a microscopic survey of the joint interface. Then, the inverse analysis with FEM analysis was applied to the load and depth curves measured by the indentation technique to identify the material constants in the constitutive equations of aluminum, copper and the compound layer. In addition, the numerical simulation for the tensile test was carried out using the identified material constants of aluminum, copper and the compound layer. The nominal stress-strain curve of the compound layer obtained by the numerical simulation showed the typical feature of brittle material. The ultimate tensile stress of the compound layer was about 1.2 GPa and ten times larger than that of aluminum. It was concluded that the bonding strength of Al/Cu joint was dependent on the integrity of the compound layer.


1948 ◽  
Vol 15 (3) ◽  
pp. 256-260 ◽  
Author(s):  
M. P. White ◽  
LeVan Griffis

Abstract A theoretical investigation of the mechanism of uniaxial compression impact on elastic-plastic materials is described in this paper. The method of analysis is similar in some respects to that previously given for tension impact on such materials. It is concluded that four different kinds of behavior can occur, depending upon the impact velocity. In the lowest velocity range the behavior in compression is similar to that found in tension. In this case stress and strain are propagated from the point of impact as a zone or wave front of ever-increasing length. This type of behavior ends at a velocity corresponding to the “critical” velocity found in tension impact. Within the next higher velocity range, stress and strain are propagated as a shock-type wave, or wave of very small length in which the transition from low to high stress and strain is very abrupt. At still higher impact velocities, there occurs “flowing deformation” in which the material is too weak to maintain coherency. Here there is a steady flow of the material toward and against the hammer, after which it flows in a thin sheet radially outward over the face of the hammer. The final possible state occurs at impact velocities greater than the speed of an elastic wave, so that no disturbance can escape from the hammer into the medium. Here the behavior is essentially that of a fluid, impact force being independent of strength of material.


Author(s):  
Katharine Liu ◽  
Emma Xiao ◽  
Gregory Westwater ◽  
Christopher R. Johnson ◽  
J. Adin Mann

The total strain, elastic plus plastic, was measured with strain gages on valve bodies with internal pressure that caused surface yielding. The correlation of the simulated maximum principal strain was compared to strain gage data. A mesh sensitivity study shows that in regions of large plastic strain, mesh elements are required that are an order of magnitude smaller than what is used for linear elastic stress analysis for the same structure. A local mesh refinement was adequate to resolve the local high strain values. Both the location and magnitude of the maximum strain changed with a local mesh refinement. The local mesh refinement requirement was consistent over several structures that were tested. The test and simulation work will be presented along with the mesh sensitivity study. Some results on using an energy stabilization technique to aid convergence will be presented in terms of the impact on the predicted plastic strain.


2015 ◽  
Vol 665 ◽  
pp. 277-280 ◽  
Author(s):  
Aniello Riccio ◽  
S. Saputo ◽  
A. Sellitto ◽  
A. Raimondo ◽  
R. Ricchiuto

The investigation of fiber-reinforced composite laminates mechanical response under impact loads can be very difficult due to simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damage as fiber and matrix cracking and inter-laminar damage, such as delamination, often take place concurrently, leading to significant reductions in terms of strength and stability for composite structure. In this paper a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts. The numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution. Five different impact locations with the same impact energy are taken into account to investigate the influence on the onset and growth of damage.


2021 ◽  
Author(s):  
MOHAMMADHOSSEIN GHAYOUR ◽  
MEHDI HOJJATI ◽  
RAJAMOHAN GANESAN

Automated manufacturing defects are types of composite structure defects that occur during fiber deposition by advanced robots. The induced gap is the most probable type of defect in the Automated Fiber Placement (AFP) technique. This defect can affect the mechanical performance of the composite structures at both material level by inducing the material inhomogeneity and the structural level by introducing the consolidation effect in the structure during the curing process. The current study investigates the effect of induced-gaps on the damage assessment of thin composite plates under Low-Velocity Impact (LVI) loading. The paper focuses on the delamination initiation and propagation and the residual plastic strain state of the impacted plates. The primary application of this study is to understand the interaction of induced gaps on the delamination pattern of composite samples subjected to LVI. For this purpose, a series of LVI tests are performed. Ultrasonic C-scan analysis and microscopic observation are implied to evaluate the internal damage due to impact loading. Finite Element (FE) analyses are then performed to evaluate the residual strain of the composite plates under Impact Energy (IE) loading less than 15 J. Then, the residual plastic strain in the impact zone is evaluated using a meso-macro method, and the effect of the local plasticity that occurs in the gap zones on the delamination initiation and propagation is studied. Results show that the stress relaxation due to the resin plasticity at the gap areas can affect the delamination pattern of the impacted composite plates. It is also shown that the residual strain of the impacted plates at the gap areas are new sources of the damages that need to be considered in the LVI analysis of the composite plates manufactured by the AFP technique.


Author(s):  
B.S. Moroz ◽  
M.G. Dudnik

The parameters of deformation degree at theoretical and experimental researches of cold backward extrusion processes of hollow glasses-type products are considered. The dependences of their relationship with the relative degree of deformation and the scale of their conformity are suggested. The published results of experimental and theoretical studies on the impact of technological parameters of the backward extrusion process of hollow products in the conditions of active friction forces to reduce the deformation force and stress-strain state of the billet are analyzed. Insuffi ciently studied features of the process and the possibility for expanding of the application fi eld of the backward extrusion method with the active action of friction forces are noted. The method for calculating of the deformation rate required to determine the current stress in the implementation of the hot backward extrusion process.


2007 ◽  
Vol 353-358 ◽  
pp. 667-670
Author(s):  
Hidetoshi Sakamoto ◽  
Tetsuya Hiwatashi ◽  
Kensuke Sato ◽  
Toshihiko Yamaguchi

In this paper, the effects of collision velocity and collision angle on bullet deformation were discussed and performance of protection board made of PC (polycarbonate) plate was estimated. After gun firing experiments, the shape of the bullet and PC were measured using three dimensional measurement machine and deformed the bullet and PC plate shapes were reconstructed by using 3D-CAD as digital data. Furthermore, crash simulation of the bullets were performed by FEM analysis code “LS-DYNA”, and the results of simulation and measurement were discussed.


Sign in / Sign up

Export Citation Format

Share Document